Come fotografare una bellissima Mineral Moon

La Luna è l’oggetto celeste più fotografato e fotogenico. A piccoli o alti ingrandimenti, di notte e persino di giorno, in fase sottile o quando è quasi piena, è un obiettivo che garantisce sempre un grande spettacolo.

L’unico problema del nostro satellite sono i colori. Illuminato dalla luce del Sole, quel pezzo di roccia che ci orbita intorno da 4,5 miliardi di anni mostra una colorazione priva delle bellissime sfumature che invece possiamo trovare facilmente su Marte, Giove, Saturno, per non parlare degli oggetti del profondo cielo. La sua superficie scura, dalla brillanza simile a quella dell’asfalto appena steso, sembra essere priva di quei contrasti cromatici che incantano i nostri occhi e ci consegnano un Universo pieno di colori.

La Luna ha dei colori? Ha tonalità reali? E nel caso, come possiamo superare le limitazioni dei nostri occhi e osservare queste sfumature?
La risposta è affermativa e prevede di applicare una semplice tecnica chiamata Mineral Moon. Prima, però, dobbiamo capire quali sono i veri colori della Luna, se ne ha.

La superficie selenica è composta da rocce simili a quelle terrestri e, proprio come qui sulla Terra, ci sono zone in cui la composizione chimica può cambiare, a seconda del tipo di minerali prevalenti. Ogni minerale ha una colorazione tipica, anche se questa è spesso molto più tenue di quella che può percepire l’occhio. Se varia l’abbondanza di un certo minerale, è allora scontato pensare che possa cambiare, in modo leggero, il colore. Sulla Terra possiamo capire meglio la situazione: le zone del deserto del Sahara sono rosate, mentre quelle del deserto australiano appaiono rosse. Sulla Luna accade una cosa simile, anche se le differenze cromatiche sono molto tenui e visibili solo attraverso un’opportuna tecnica fotografica.

La Mineral Moon è una tecnica molto semplice di fotografia che prevede di catturare immagini a grande campo del nostro satellite con sensori a colori e di applicare una semplice tecnica di elaborazione che ci permetterà di estrapolare la grande quantità di informazione contenuta nelle nostre fotografie.

 

La strumentazione

La strumentazione adatta è costituita da una normale reflex, anche non modificata, al fuoco diretto di un telescopio che NON sia un rifrattore acromatico, poiché questi soffrono di cromatismo. Tutti i catadiottrici e i telescopi Newton sono perfetti allo scopo (e anche i rifrattori apocromatici veri, cioè con almeno 3 lenti). Non importa il diametro perché non siamo interessati, almeno all’inizio, a una stratosferica risoluzione. Le foto più spettacolari, infatti, si ottengono includendo tutto il disco lunare nel campo inquadrato, magari in prossimità della Luna piena, così sappiamo anche cosa fare in quelle notti di solito poco prolifiche per le osservazioni astronomiche.

 

Tecnica di ripresa

L’acquisizione delle immagini non è dissimile da quella necessaria per fotografare i pianeti. Si catturano tanti frame, in formato grezzo (raw) tutti identici. È importante raccogliere tanti scatti per aumentare la dinamica dell’immagine e ottenere così un’immagine in cui i colori saranno ben visibili. Non c’è un limite ma in generale sarebbe meglio catturare almeno 100 frame, scattando a bassa sensibilità, magari 100 ISO. Non aumentare la sensibilità di scatto perché si incrementa il rumore e diminuisce la dinamica, che è l’unica cosa che davvero conta in questo caso.

I momenti migliori per fare gli scatti sono quando il nostro satellite si trova molto alto sull’orizzonte. Questa richiesta è fondamentale per evitare che la nostra atmosfera alteri in modo irreversibile i tenui colori che vogliamo estrapolare.

 

Elaborazione

Dopo aver allineato e sommato i singoli scatti con programmi come Registax o Autostakkert, cercando di scartarne il meno possibile, tanto la risoluzione effettiva non conta molto, dobbiamo lavorare sull’immagine grezza in due fasi, una dedicata esclusivamente al colore e l’altra alla risoluzione.

Creiamo due copie identiche della nostra immagine grezza. Useremo una di queste come canale di crominanza, al quale quindi cercheremo di estrarre al meglio i colori tralasciando i contrasti. L’altra versione la trasformeremo in bianco e nero e applicheremo delle maschere di contrasto, concentrandoci solo sul lato dei contrasti e della risoluzione. Questa sarà la base di “luminanza” che poi coloreremo con la versione a cui avremo estrapolato i colori. Agendo in questo modo possiamo sfruttare sia l’informazione cromatica che quella spaziale, senza sacrificare nulla del segnale che abbiamo raccolto con tanta fatica.

Sulla copia dedicata al colore non dobbiamo applicare alcuna maschera di contrasto ma agire in due modi. Prima di tutto dobbiamo eliminare la dominante giallastra tipica del nostro satellite, che rappresenta solo il contributo della luce solare. Per fare questo possiamo operare un bilanciamento del bianco, selezionando come punto campione una zona dalla colorazione neutra (di solito NON nei piatti mari, che tendono a essere azzurri). A volte anche la funzione “colore automatico” di Photoshop aiuta molto e restituisce un’immagine priva di dominante generale. L’obiettivo è avere un’immagine che sembra (ma non lo è) in bianco e nero, senza dominanti.

A questo punto possiamo passare alla fase successiva: aumentare la saturazione del colore fino a far comparire i colori ma senza creare artefatti. In generale è meglio procedere a piccoli passi, aumentando la saturazione di circa il 30% ogni volta invece che farlo in un’unica soluzione. Piano piano vedremo la Luna colorarsi. Ci fermeremo solo quando cominceremo a vedere il rumore di fondo e l’immagine diventerà molto granulosa. Non bisogna applicare altri strani filtri, come quelli fotografici, che fanno più danni che altro: ricordiamo infatti che stiamo cercando di rappresentare la realtà come è e non come vorremmo che fosse!

Ecco i colori della Luna! L’immagine, però, non è proprio bella a livello estetico, ecco perché abbiamo a disposizione l’altra copia trasformata in bianco e nero e a cui abbiamo applicato qualche maschera di contrasto per renderla bella.

I colori ci sono ma l'immagine è molto granulosa. Non importa, per questo abbiamo creato una versione di luminanza che coloreremo con questa.

I colori ci sono ma l’immagine è molto granulosa. Non importa, per questo abbiamo creato una versione di luminanza che coloreremo con questa.

Prendiamo allora la nostra crominanza, un po’ brutta, e copiamola sulla versione di luminanza, trasformata in immagine a colori. Allineiamo i due livelli e impostiamo il modo di unione su “colore”. Come per magia, l’informazione del colore viene trasferita sulla versione esteticamente più gradevole e la nostra Mineral Moon è pronta!

Le due versioni a confronto. A sinistra ci siamo concentrati solo sulla luminanza e sui dettagli. A destra solo sul colore. Ora dobbiamo unire al meglio le due informazioni.

Le due versioni a confronto. A sinistra ci siamo concentrati solo sulla luminanza e sui dettagli. A destra solo sul colore. Ora dobbiamo unire al meglio le due informazioni.

 

Sovrapponendo il file di crominanza a quello di luminanza e unendo con il metodo "colore" ecco che la magia è completa: una foto che mostra i dettagli e i veri colori della Luna!

Sovrapponendo il file di crominanza a quello di luminanza e unendo con il metodo “colore” ecco che la magia è completa: una foto che mostra i dettagli e i veri colori della Luna!

La Mineral Moon

La Mineral Moon

I colori sono reali? Certo! Anche se l’occhio non li percepisce, non vuol dire che non esistono, piuttosto che il nostro apparato visivo non ha la sensibilità sufficiente a restituirceli, come d’altra parte accade a tutti gli oggetti del profondo cielo. La realtà è molto più ampia del piccolo spicchio accessibile al nostro occhio. In un certo senso, allora, è più corretto dire che è la versione monocromatica che noi possiamo vedere di solito, della Luna e delle nebulose, a non essere reale, perché la realtà, indagata con strumenti più sensibili e oggettivi, mostra un Universo pieno di colori!

Immagini di questo tipo, oltre a essere belle per la vista, contengono dati interessanti dal punto di vista geologico. Certo, la precisione nel determinare gli elementi prevalenti non è elevatissima ma possiamo dire, ad esempio, che le zone rosse sono povere di ferro e in generale più antiche, mentre quelle blu rivelano aree ricche di titanio. Chissà che un giorno anche queste nostre foto non serviranno ai primi minatori lunari come indicazione su dove trovare maggiori quantità dei preziosi minerali che cercheranno di estrarre.

Albino Carbognani: piccoli punti di luce che si muovono in cielo

Quando si parla di nomi come questo, ogni presentazione risulta superflua; tuttavia non posso fare a meno di spendere alcune brevi parole su Albino Carbognani, che oltre ad essere uno dei grandi nomi dell’astronomia nel nostro paese, e un amico di vecchia data, si rivela essere persona sempre capace di sorprendere. Uno di quelli che riesce a mostrarti, a farti capire davvero, che chi nasce astrofilo, astrofilo rimane. Per tutta la vita! Al di là dei successi conseguiti nel mondo scientifico; al di là della ricerca professionale; al di là persino degli strumenti pazzeschi coi quali puoi operare ogni santo giorno, fino a renderli routine.

L’astrofilia, ci insegna Albino, è qualcosa in più, qualcosa che va oltre la semplice osservazione amatoriale del cielo.

L’astrofilia è contemplazione, l’astrofilia è stupore, l’astrofilia è passione; grande, che non si spegne mai. È quella strana forma di sana follia che ti fa svegliare nel cuore della notte, anche se qualcuno all’altro capo del letto ti invita a restare; anche se fuori c’è un mondo assonnato, avvolto dal gelo. Ti fa alzare, preparare, impegnare e faticare per ore, se serve, al solo scopo di poter osservare ancora una volta quel piccolo puntino luminoso lassù… È quell’istinto che ti spinge a fare e impegnarti ancora, con il cuore, con l’anima, con il poco tempo libero che hai, con i conti che non tornano mai, anche quando già in tanti, prima di te, si sono cimentati con quel CCD su quella galassia.

È un desiderio, una fame, che non passa mai; neanche quando sai, come il nostro Albino, che lo strumento che stai per usare, il TUO telescopio, l’estrinsecazione materiale di ciò che fa di te un astrofilo, all’osservatorio non farebbe nemmeno la funzione di guida.

Ecco, questo è il modo in cui voglio introdurre oggi lo splendido articolo di Albino, che pubblico qui sotto: un grande lavoro, di un grande amico, ma soprattutto di un grande astrofilo!

 

LUCA ZANCHETTA – TELESKOP SERVICE ITALIA

 

 


 

Piccoli punti di luce che si muovono in cielo

Come e perché fare la fotometria degli asteroidi

 

Albino Carbognani, Ph.D.

Spesso e volentieri gli astrofili che usano telescopio, montatura computerizzata e camera CCD hanno come obiettivo principale l’astrofotografia di oggetti deep-sky, cioè la ripresa di nebulose, ammassi stellari e galassie, principalmente per fini estetici con la rincorsa al dettaglio più tenue. Si tratta di una attività che può dare molte soddisfazioni, i sottili disegni delle nebulose e le delicate trame delle galassie hanno il loro indubbio fascino. Peraltro l’astrofotografa richiede un notevole investimento in attrezzatura piuttosto sofisticata, senza contare il tempo che richiede per ottenere buoni risultati.

Considerato l’investimento sulla strumentazione può essere interessante chiedersi come si possa svolgere anche una attività interessante dal punto di vista scientifico: l’imaging deep-sky non esaurisce sicuramente tutte le possibilità di utilizzo. Certo, quando si fa scienza si devono compiere delle misure e questo può complicare la strada da percorrere per ottenere dei risultati, ma la soddisfazione alla fine sarà veramente notevole. Sotto questo punto di vista gli asteroidi offrono diverse possibilità entusiasmanti!

 

L’astrometria dei NEA

La prima attività scientifica cui si può pensare quando si tratta di corpi minori è la caratterizzazione orbitale degli asteroidi near-Earth (NEA). Si tratta degli asteroidi che con la loro orbita possono passare a meno di 0,3 UA dalla Terra. Sulla scala dei milioni di anni le orbite dei NEA sono talmente instabili (cioè caotiche) che rappresentano un potenziale rischio impatto per il nostro pianeta. Complessivamente ne sono noti più di 15.600 e negli ultimi anni la media delle nuove scoperte è di circa 1000 ogni anno. Grosso modo è noto il 95% dei NEA con diametro pari o superiore al km, poco meno di 1000 oggetti. L’obiettivo ora è la scoperta e caratterizzazione della maggior parte degli oggetti con diametro superiore ai 140 m, attività che richiederà ancora parecchi anni per essere portata a termine perché più si scende con il diametro e maggiore è il numero degli oggetti. Il valore minimo di 140 m per il diametro può sembrare piccolo, in realtà non lo è affatto se si considera che la celebre Catastrofe di Tunguska del 30 giugno 1908 è stata provocata dalla caduta di un piccolo asteroide di soli 50 metri di diametro! In effetti il danno che un asteroide è in grado di provocare è sì proporzionale alla massa ma anche al quadrato della velocità di caduta. Essendo quest’ultima dell’ordine di svariate decine di km/s ecco che anche un piccolo oggetto può causare un danno rilevante.

Un tipico NEA è quindi un oggetto “piccolo” e anche molto scuro perché la superficie assorbe gran parte della luce solare. Per questo motivo un NEA può essere scoperto solo quando è già in prossimità della Terra e approssimativamente nella direzione opposta al Sole. A questo scopo è necessario impiegare grandi telescopi con ampi campi di vista, in grado di scansionare l’intera sfera celeste nel più breve tempo possibile e ripetere il processo in continuazione. Chiaramente attrezzature di questo tipo sono oltre le possibilità di un astrofilo. In effetti le survey che si occupano della scoperta dei NEA sono tutte statunitensi, fra quelle di maggior successo ci sono la Catalina Sky-Survey in Arizona, che utilizza due telescopi da 68 e 150cm di apertura, e Pan-STARSS nelle Hawaii con due telescopi da 180 cm di diametro.

Il contributo degli astrofili diventa importante nella fase successiva alla discovery, quando gli oggetti appena scoperti vengono inseriti nella NEO Confirmation Page (NEOCP) del Minor Planet Center per la conferma e la determinazione preliminare dell’orbita. Peraltro contribuire alla caratterizzazione astrometrica di un NEA, oltre al valore scientifico del lavoro, ha il suo indubbio fascino!

Purtroppo però, negli ultimi anni si è assistito ad un progressivo aumento della magnitudine dei NEA da confermare, come è logico aspettarsi visto che tutti gli asteroidi “grossi” oramai sono noti. Di conseguenza, mentre nel 2005 anche con un piccolo telescopio da 25-30 cm di diametro c’era solo l’imbarazzo della scelta perché gli oggetti avevano una magnitudine apparente attorno alla +18, ora si veleggia attorno alla +20 con tendenza a salire. Chiaramente se il diametro del telescopio è troppo piccolo, diventa difficile ottenere delle immagini misurabili per dare il proprio contributo.

Tuttavia la determinazione dell’orbita non esaurisce tutto quello che si può fare su un NEA o, meglio, su un asteroide di Fascia Principale (MBA). Infatti, una volta nota l’orbita, dell’asteroide in sé non conosciamo ancora niente. Per questo il passo successivo all’astrometria è la fotometria, che permette di studiare fisicamente l’asteroide: in primo luogo di determinare il periodo di rotazione. La buona notizia è che si tratta di un campo di ricerca dove anche con un piccolo telescopio si può dare il proprio contributo e che si possono fare delle scoperte del tutto inattese!

Attualmente, nel database del Minor Planet Center ci sono circa 474.000 asteroidi numerati, di cui appena 20.200 (circa il 4,3 %), hanno un nome. Dai dati presenti nell’Asteroid Lightcurve Database, uno dei punti di riferimento per chi si occupa di fotometria degli asteroidi, gli oggetti numerati di cui è noto il periodo di rotazione sono circa 16.000, pochissimi rispetto al totale dei numerati: solo il 3,4%. Considerate le magnitudini in ballo per un tipico MBA (da +14 alla +16), si tratta di un settore dove si può dare il proprio contributo originale anche con telescopi di piccolo diametro (20-30 cm). La caratterizzazione fisica degli asteroidi è un campo di ricerca con ampie possibilità di sviluppo, anche per i prossimi anni, e poi fare la fotometria degli asteroidi permette di caratterizzare fisicamente questi antichi testimoni dell’evoluzione del Sistema Solare.

 

La strumentazione per la fotometria

Vediamo qualche indicazione strumentale sul “setup ideale” da utilizzare per la fotometria degli asteroidi. Prima di tutto il telescopio deve avere almeno 20 cm di diametro e deve essere accessoriato con una buona camera CCD a 16 bit, cioè con circa 216 = 65.536 livelli di intensità possibili. La camera deve essere almeno raffreddata con una cella Peltier avente un delta T di 30-40 °C rispetto alla temperatura ambiente e deve essere del tipo non-ABG, cioè senza antiblooming. L’antiblooming, utile per l’estetica delle foto deep-sky, non deve essere presente perché con quest’ultimo si perde in sensibilità, risoluzione e risposta lineare tutte caratteristiche importanti quando si fa ricerca scientifica. Il sensore deve essere del tipo in bianco/nero per massimizzare l’efficienza quantica e la camera può essere dotata di una ruota portafiltri con filtri standard B, V, R e I di Johnson-Cousins. La scala dell’immagine CCD può oscillare da 1 a 2 secondi d’arco per pixel, dipende dalle condizioni di seeing locali, in modo tale che il diametro stellare sia descritto da almeno 2-3 pixel. In ogni caso, per questo tipo di lavoro non sono necessarie le lunghe focali tipiche delle riprese planetarie in alta risoluzione, o i lunghissimi tempi di posa caratteristici della fotografia deep-sky.

Per avere misure fotometriche attendibili è necessario che l’immagine dell’asteroide non sia in saturazione ed è obbligatorio fare i file di calibrazione standard da applicare alle immagini, riprese ovviamente nel formato FITS (Flexible Image Transport System) standard. Da evitare nel modo più assoluto formati compressi come il jpg perché si perde l’informazione fotometrica. I file di calibrazione necessari sono il master dark, ottenuto dalla mediana di alcune decine di dark frame presi alla stessa temperatura e identico tempo di esposizione delle immagini e il master flat, ottenuto dalla media di almeno alcune decine di flat frame singoli, ovviamente ciascuno corretto con il proprio master dark.

La presenza di un telescopio di guida e di una camera di autoguida con porta ST4 da collegare alla montatura può non essere necessaria se la montatura equatoriale è sufficientemente stabile e robusta, visto che i tempi di posa tipici sono al più di alcuni minuti. La montatura equatoriale deve essere preferibilmente del tipo a forcella per evitare i problemi fotometrici che può dare il meridian flip, l’inversione degli assi che avviene attorno al passaggio in meridiano e che, di solito, affligge le equatoriali alla tedesca. Per compensare il meridian flip si può ritardare il più a lungo possibile l’inversione della montatura in questo modo si possono ottenere curve di luce più continue, cioè senza “gradini”. Caldamente consigliata infine la presenza del computer per il puntamento automatico, per non perdere tempo prezioso nella fase di ricerca degli asteroidi in cielo.

Per quanto riguarda la scelta dei target interessanti, NEA o MBA, si possono consultare le ultime pagine del Minor Planet Bulletin (vedi http://www.minorplanet.info/mpbdownloads.html), la rivista scientifica internazionale liberamente disponibile in pdf e punto di riferimento per professionisti e non per quanto riguarda la fotometria degli asteroidi.

 

La fotometria d’apertura

In astrofisica con il generico termine fotometria si indica lo studio della radiazione ottica emessa da un corpo celeste, avente una lunghezza d’onda fra 400 e 700 nm (1 nm = 10-9 m). Si parla invece di radiometria quando si considera anche la radiazione emessa al di fuori dell’intervallo del visibile.

In una tipica immagine con una posa superiore alla decina di secondi, le sorgenti puntiformi (stelle, asteroidi ecc.), vengono convolute dagli effetti della turbolenza atmosferica, dall’ottica del telescopio, dalle vibrazioni del tubo ottico e così via. Il risultato è che la distribuzione della luce sul sensore può essere descritta da una superficie gaussiana. Di solito la fotometria che viene fatta sulle immagini CCD, dopo la correzione per master dark e master flat, è la fotometria d’apertura. Con questa tecnica si sovrappone al target un anulus di misura con un diametro pari a 3 volte la full width at half maximum (FWHM), cioè la larghezza a mezza altezza del tipico profilo gaussiano che ha la sorgente puntiforme. Prendere 3 volte la FWHM di una sorgente puntiforme equivale a prendere un anello con un diametro pari a circa 7,1 volte il valore di sigma della gaussiana (vale la relazione 1 FWHM 2,355), quindi con 3 FWHM si è sicuri di includere praticamente tutto il segnale proveniente dalla sorgente puntiforme e raccolto dai pixel del CCD.

a

Figura 1. Gli anulus di misura di una sessione di fotometria d’apertura riguardante l’asteroide near-Earth 2002 WP. I cerchi gialli sono per il target, il verde è per la prima stella di confronto, i cerchi rossi sono per le altre quattro stelle di confronto.

Il CCD è un dispositivo a risposta lineare quindi l’intensità I di una stella (in unità arbitrarie), ottenuta sommando l’intensità di tutti i pixel che compongono l’immagine della stella (o dell’asteroide), all’interno dell’anello di misura sarà direttamente proporzionale al flusso luminoso ricevuto. All’intensità I del target va però tolto il valore del segnale proveniente dal fondo cielo e non dalla sorgente che ci interessa. Il valore della intensità del fondo cielo si ottiene leggendo il valore di intensità dei pixel posti in un anello più esterno ma concentrico a quello di misura della sorgente, possibilmente senza stelle di fondo (vedi Fig. 1). Se indichiamo con B il valore del fondo cielo (che si ottiene dal valore medio del pixel del fondo moltiplicato per il numero di pixel misurati del target), il segnale del solo target sarà dato da:

1  (1)

Noto il segnale S della sorgente, si può calcolare quella che è nota come magnitudine strumentale:

2  (2)

Qui t è il tempo di posa dell’immagine e S/t è una quantità proporzionale al flusso della sorgente. In questo modo si possono confrontare le magnitudini strumentali dello stesso target ma riprese con tempi di posa diversi.

Una volta misurata la magnitudine strumentale del target e delle stelle di confronto si può ottenere la variazione di magnitudine del target in funzione del tempo usando la tecnica della fotometria differenziale. La fotometria differenziale consiste essenzialmente nel misurare la differenza di magnitudine strumentale fra il target e la media delle magnitudini strumentali di due o più stelle di confronto scelte nello stesso campo di vista. Rispetto alla fotometria calibrata quella differenziale non richiede particolari condizioni di trasparenza costante del cielo e fornisce una buona accuratezza quando si tratta di misurare piccole variazioni di luminosità (inferiori al decimo di magnitudine), perché sia la luce del target sia delle stelle di confronto attraversano la stessa air-mass e, se hanno colore simile, subiscono anche gli stessi effetti di estinzione atmosferica.

In effetti, volendo essere pignoli, la differenza delle magnitudini strumentali differisce di una quantità proporzionale alla differenza degli indici di colore CI dalla differenza delle magnitudini apparenti vere secondo l’equazione:

3  (3)

Tuttavia, nel caso degli asteroidi che riflettono la luce del Sole gli indici di colore sono grossomodo simili a quelli della nostra stella (B-V = 0,66 e V-R = 0,53), e se anche si osserva senza filtri ma si usano come stelle di confronto quelle di tipo solare, allora le differenze delle magnitudini strumentali saranno praticamente uguali alle differenze delle magnitudini apparenti perché il secondo termine della Eq. (3) si annulla o è molto piccolo.

Ovviamente, visto che gli asteroidi si spostano in cielo sia per effetto del moto orbitale attorno al Sole sia per effetto del moto eliocentrico della Terra, il set di stelle di confronto utilizzabile per la fotometria differenziale cambia da una sera all’altra (o da un’ora all’altra nel caso di NEA veloci), e una delle prime difficoltà da superare sarà il “raccordo” fra le curve di luce appartenenti a sessioni diverse, specialmente se il periodo di rotazione è molto lungo. Il problema del raccordo delle sessioni è evidente nel caso della semplice fotometria differenziale, mentre si riduce notevolmente con la fotometria assoluta, calibrata usando come riferimento fotometrico le stelle di confronto del campo di vista. Non entreremo nel dettaglio della fotometria calibrata, ma i cataloghi stellari utilizzabili, entro alcuni centesimi di magnitudine e per target fino alla mag +15, come riferimento per le magnitudini sono l’UCAC4 (USNO CCD Astrograph Catalog), il CMC15 (Carlsberg Meridian Catalogue) e l’ultima release dell’APASS (AAVSO Photometric All-Sky Survey).

La selezione dell’asteroide da osservare avviene in base agli obiettivi che ci si propone di raggiungere, alla magnitudine apparente, alla velocità angolare, al range di air-mass e al numero di ore che un asteroide può essere osservato (in generale più sono e meglio è). Anche in condizioni di bassa turbolenza atmosferica, il target deve essere ad almeno 25° di altezza sull’orizzonte (air-mass = 2,4), in modo da minimizzare gli effetti deleteri del cattivo seeing e dell’assorbimento atmosferico che abbassano il rapporto segnale/rumore.

Gli asteroidi si spostano sulla sfera celeste, non sono target statici specialmente i near-Earth, di conseguenza il tempo di esposizione è determinato in base alla necessità di avere una immagine del target relativamente puntiforme sull’immagine, anche se in campo fotometrico una certa elongazione è ben tollerata dai software di misura. Un tempo di esposizione ragionevole (in minuti) sarà dato dalla FWHM (in secondi d’arco) diviso per la velocità angolare del target (secondi d’arco/minuto). In questo modo si raddoppiano le dimensioni della FWHM nella direzione del moto dell’asteroide, una elongazione ancora facilmente misurabile. Le esposizioni tipiche sono di 30-240 s per i MBA, la cui velocità angolare tipica è di 0,5 arcsec/minuto, e di 5-120 s per i NEA con velocità tipiche di 5-10 arcsec/minuto.

Fissato il tempo di esposizione bisogna verificare su immagini di prova che il valore del rapporto segnale/rumore (o SNR, Signal to Noise Ratio), sia adeguato alla incertezza fotometrica che si vuole raggiungere. Questo è un punto importante, spesso sottovalutato: non basta che l’asteroide sia genericamente visibile sull’immagine per avere automaticamente una buona fotometria. Facendo qualche stima si trova che per avere una precisione fotometrica con una incertezza di 0,02 mag è necessario avere SNR 50. Un valore eccellente è SNR 100, perché l’incertezza scende a 0,01 mag mentre un valore ancora accettabile, specialmente per asteroidi con una discreta ampiezza della curva di luce, è SNR 25 a cui corrisponde una incertezza di circa 0,04 mag. Di solito il SNR viene stimato direttamente dal software fotometrico quindi non è necessario avventurarsi in calcoli complessi.

Uno dei software di riferimento per la fotometria degli asteroidi, sia differenziale sia calibrata, è MPO Canopus (http://www.minorplanetobserver.com/MPOSoftware/MPOCanopus.htm) di Brian Warner. Per la verità con Canopus è possibile anche la fotometria delle stelle variabili anche se non è il suo utilizzo principale. Questo programma richiede un certo periodo per l’apprendimento del corretto utilizzo, fase che non va saltata pena il rischio di ottenere risultati fotometrici errati o poco attendibili. Caldamente consigliata anche la lettura del libro “A Practical Guide to Lightcurve Photometry and Analysis”, scritto dallo stesso Warner ed edito dalla Springer, in cui vengono illustrati in dettaglio i principi della fotometria asteroidale. Sono diversi i settori dove la fotometria degli asteroidi può dare un contributo, fra questi vedremo in dettaglio:

  1. La determinazione del periodo di rotazione

  2. La spin-barrier e la “caccia” ai large super-fast rotator

b

Figura 2. Una tipica sessione di MPO Canopus dopo l’analisi di Fourier, con la curva di luce dell’asteroide in fase e il corrispondente spettro dei periodi.

 

Determinazione del periodo di rotazione di un asteroide

Una tipica sessione di fotometria differenziale per la determinazione del periodo di rotazione di un asteroide vede la ripresa di immagini in modalità “fitta”, cioè una dietro l’altra, per una durata di diverse ore. Nel caso di asteroidi con periodo di rotazione completamente sconosciuto l’osservazione fotometrica deve essere fatta su almeno 2-3 notti consecutive prima di sperare di avere una buona misura (a meno che l’asteroide non sia un rotatore lento!). Generalmente, i periodi sono di 6-8 ore quindi almeno due-tre sessioni lunghe sono il minimo per avere una buona probabilità di successo. A questa segue la fase di riduzione dei dati: scelta delle stelle di confronto nel campo di vista, misura della magnitudine strumentale del target e delle confronto, calcolo della media delle magnitudini strumentali delle stelle di confronto da sottrarre al target e, infine, plot della magnitudine differenziale in funzione del tempo. Può capitare che una delle stelle scelta per il confronto non sia costante, in questo caso ci potrebbe scappare anche la scoperta di una nuova stella variabile. Per togliersi il dubbio è bene consultare il catalogo VSX, il Variable Star indeX, dell’AAVSO.

Da una o più sessioni della durata di alcune ore si otterrà la tipica curva di luce in fase di forma genericamente bimodale, cioè con due massimi e due minimi, come ci si aspetta da un generico corpo irregolare di forma allungata in rotazione attorno al proprio asse (Fig. 3). Ovviamente non sempre è così, ci possono essere curve trimodali o più complesse. In generale, vale la regola statistica che maggiore è l’ampiezza della curva di luce e più è probabile che la curva sia bimodale.

c

Figura 3. La curva di luce di un asteroide in rotazione attorno al proprio asse è una funzione periodica di periodo P e la forma più probabile è quella bimodale, cioè con due massimi e due minimi a seconda della superficie, più o meno estesa, illuminata dal Sole e rivolta verso la Terra. L’ampiezza della curva di luce si misura dal massimo al minimo assoluto.

Per la determinazione del periodo di rotazione degli asteroidi si usa l’analisi di Fourier. In MPO Canopus i dati fotometrici con le magnitudini ridotte di ogni sessione vengono fittate con una serie di Fourier di grado m finito a scelta. La stima del miglior periodo P che fitta tutti i dati è quello che fornisce il minore scarto fra la curva di Fourier teorica e i valori osservati della magnitudine (spettro dei periodi). Attenzione però: minimizzare lo scarto non garantisce l’unicità della soluzione per il periodo P, specie se la curva di luce è simmetrica, cioè massimi e minimi sono uguali fra loro o i dati non coprono una intera rotazione dell’asteroide! E ora vediamo perché può essere interessante determinare il periodo di rotazione di un asteroide.

d

Figura 4. La curva di luce in fase, il fit di Fourier al 4° ordine e lo spettro dei periodi per l’asteroide di fascia principale 3433 Fehrenbach. L’ampiezza del curva di luce è abbastanza elevata e l’incertezza sui singoli punti è di circa 0,02 magnitudini. Lo spettro dei periodi mostra un minimo principale attorno alle 4 ore (soluzione bimodale) ed un minimo secondario attorno alle 2 ore (soluzione monomodale).

 

La cohesionless spin-barrier e gli asteroidi Large Super-Fast Rotator

Gli asteroidi sono corpi celesti soggetti ad interazione collisionale e la popolazione che vediamo oggi nella Fascia Principale (o main-belt), la zona di spazio compresa fra le orbite di Marte e Giove, è il risultato di miliardi di anni di evoluzione con gli asteroidi che si sono ripetutamente scontrati fra di loro. Questo ha portato alla distruzione parziale dei corpi maggiori, che sono in grado di resistere meglio alle collisioni, e alla distruzione parziale o totale dei corpi più piccoli. La scoperta delle famiglie di asteroidi fatta dall’astronomo giapponese Hirayama nel 1918 supporta questo quadro evolutivo.

L’analisi dei periodi di rotazione dei MBA e dei NEA che da essa derivano, mostra un comportamento che, a prima vista, non ci si aspetterebbe. Se si riporta su un grafico il periodo di rotazione di ciascun asteroide in funzione del diametro si scopre un comportamento affascinante: al di sopra di circa 150-200 metri di diametro i periodi di rotazione sono pari o superiori a circa 2,2 ore, mentre per i corpi più piccoli si possono avere valori anche di molto inferiori (Fig. 6).

Il valore limite di circa 2,2 ore è noto come “cohesionless spin-barrier”, cioè barriera rotazionale senza coesione. Per spiegare la presenza di questa “soglia di sbarramento” si ipotizza che gli asteroidi più piccoli di circa 150-200 m di diametro siano blocchi monolitici, le “schegge” createsi nella collisione di asteroidi con diametro maggiore, mentre i corpi più grandi sarebbero oggetti fratturati dalle collisioni e composti di blocchi più piccoli, non coesi fra di loro, ma tenuti semplicemente insieme dalla reciproca forza di gravità (struttura a “rubble-pile” senza coesione). Un notevole esempio di asteroide rubble-pile è il NEA (25143) Itokawa, esplorato nel 2005 dalla sonda giapponese Hayabusa (Fig. 5).

e

Figura 5. L’asteroide (25143) Itokawa ripreso dalla sonda giapponese Haybusa nel 2005. Itokawa è lungo circa 500 m e non presenta crateri da impatto sulla superficie, segno che si tratta di un aggregato di rocce e polveri risultato di una collisione catastrofica che ha smembrato l’asteroide progenitore (ISAS, JAXA).

Che le cose stiano così è dimostrato dal fatto che, se si calcola teoricamente il periodo limite di un asteroide sferico con una struttura a rubble-pile e una densità media di 2,2 g/cm3, si trova proprio un periodo limite di circa 2,2 ore. Per ottenere la formula che ci serve basta osservare che il periodo limite teorico per un asteroide rubble pile senza coesione (che chiameremo Plim), si trova imponendo che l’accelerazione superficiale dovuta alla rotazione dell’asteroide di raggio R e massa totale M sia pari a quella di gravità dell’asteroide stesso (condizione di moto circolare). In questo modo si impone la condizione che i blocchi superficiali di cui è fatto l’asteroide rubble-pile seguano un’orbita circolare con raggio pari a quello del corpo stesso. Per il periodo limite si trova:

4  (4)

Nella Eq. (4) G è la costante di gravitazione universale e vale G = 6,674x10-11 m3 kg-1 s-2, mentre ρ è la densità media dell’asteroide. Si può verificare che per ρ = 2200 kg/m3 (equivalenti a 2,2 g/cm3), si ottiene un periodo limite di circa 2,2 ore. Se il periodo di rotazione diminuisce al di sotto di Plim, l’equilibrio si rompe e l’asteroide si separa nei blocchi distinti di cui è composto. Notare come questo risultato sia indipendente dal diametro stesso dell’asteroide: che sia grande o piccolo un asteroide rubble-pile che ruota troppo veloce si sfascia comunque! Secondo questo modello un asteroide rubble-pile che si trova con un periodo di rotazione al di sotto di quello della spin-barrier si frammenterà dando vita, ad esempio, ad un sistema binario. In effetti uno dei meccanismi più noti per la formazione degli asteroidi binari vede la fissione rotazionale di asteroidi rubble-pile che, a causa dell’effetto YORP, sono scesi con il periodo di rotazione al di sotto del valore della spin-barrier. Questo meccanismo spiega abbastanza bene le caratteristiche rotazionali dei primari fra le coppie di asteroidi, oggetti che hanno orbita eliocentrica simile ma che non sono legati gravitazionalmente.

Abbiamo detto che gli asteroidi con diametri più piccoli di 150-200 metri sono invece considerati veri e propri blocchi monolitici, cioè frammenti collisionali, in grado di ruotare più velocemente del valore limite dato dalla spin-barrier a causa delle intense forze di coesione interne che tengono unito il corpo. Tuttavia ci sono delle eccezioni a questa “regola”, cioè esistono alcuni asteroidi con un diametro superiore ai 200 m (quindi rubble-pile secondo il modello precedente), che però hanno un periodo di rotazione al di sotto della spin-barrier.

Il primo oggetto scoperto a violare palesemente la cohesionless spin-barrier è stato l’asteroide 2001 OE84 nel 2002. Si tratta di un asteroide near-Earth che ruota in 0,4865 ore con un diametro di circa 700 metri. Altro notevole oggetto è l’asteroide main-belt (335433) 2005 UW163 che ha un periodo di rotazione di 1,290 ore e una dimensione di 600 metri, scoperto nel 2014. Uno degli ultimi asteroidi scoperti di questo tipo è il near-Earth 2011 UW158, che ha un periodo di rotazione di 0,6107 ore e una dimensione di 300×600 metri determinata tramite osservazioni radar. Ad ora però nessun asteroide con un diametro maggiore di 1 km ruota più rapidamente di 2,2 ore.

Gli asteroidi che violano la spin-barrier sono chiamati Large Super-Fast Rotator (LSFR). La loro esistenza è stata teorizzata per la prima volta da Holsapple nel 2007 e la teoria è stata successivamente arricchita e perfezionata da Sánchez e Scheeres nel 2014. Questi ultimi autori hanno esplorato la possibilità che, grazie alle forze di van der Waals che si esercitano fra i grani di regolite interstiziali, un asteroide con una struttura a rubble-pile possa avere una forza coesiva diversa da zero. In questo teoria i grani di regolite agirebbero come una specie di “colla” in grado di tenere coesi i blocchi di maggiori dimensioni.

f

Figura 6. La frequenza di rotazione degli asteroidi (espressa in rotazioni al giorno), in funzione del diametro in km. La linea tratteggiata orizzontale è la spin-barrier, che equivale a circa 10 rotazioni/giorno. I triangoli rossi sono i sistemi binari, mentre quello verdi sono gli asteroidi con precessione dello spin (tumbler). Per spiegare l’andamento del periodo vs. diametro per gli asteroidi si ipotizza che gli oggetti più piccoli di circa 150-200 m di diametro siano blocchi monolitici, mentre i corpi più grandi sarebbero oggetti fratturati dalle collisioni composti di blocchi più piccoli, non coesi fra di loro, tenuti insieme dalla reciproca forza di gravità (struttura a “rubble-pile” senza coesione). Immagine tratta dall’Asteroid Lightcurve Photometry Database (http://alcdef.org/).

 

La “caccia” agli asteroidi LSFR

La forza di coesione della regolite inizia a diventare importante solo per corpi inferiori ai 10 km di diametro, quindi la ricerca di LSFR va fatta su asteroidi relativamente piccoli. Risulta chiaro che la fotometria degli asteroidi è una tecnica essenziale per andare a caccia degli asteroidi LSFR. Tuttavia l’osservazione dei piccoli MBA può essere difficoltosa. Ad esempio, se consideriamo un tipico asteroide di tipo S con 1 km di diametro posto a 2,5 UA dal Sole, all’opposizione avrà una magnitudine apparente di +20,3. Questo valore è piuttosto alto e fare la fotometria con piccoli strumenti diventa difficile. Per questo motivo è molto più facile andare alla ricerca di LSFR nella popolazione degli asteroidi near-Earth quando fanno il loro flyby con la Terra. I NEA hanno dimensioni che rientrano in quelle tipiche in cui si possono trovare i LSFR e possono diventare sufficientemente luminosi da essere osservati agevolmente anche in piccoli strumenti. L’unica “pecca” di questa strategia osservativa è che il moto proprio di un NEA può essere elevato e una sessione con le stesse stelle di confronto può diventare davvero breve se il campo di vista non è sufficientemente ampio. Per non avere troppi problemi con la durata della sessione ci si può limitare a considerare oggetti con un moto proprio non superiore ai 10 arcsec/minuto. Si tratta di osservazioni non facili ma che possono dare informazioni preziose sulla costituzione fisica dei piccoli asteroidi. Vale la pena andare a caccia di LSFR!

g

Figura 6. L’asteroide 2014 VQ è un NEA candidato ad essere un LSFR scoperto nel novembre 2014. Ha un periodo di rotazione di soli 7minuti e una dimensione che può andare da 165 metri (se di tipo V) a 267 metri (se di tipo S).

 

Conclusioni

Come abbiamo visto in questo breve articolo la fotometria degli asteroidi può portare a dei risultati davvero molto interessanti, sia per quanto riguarda lo studio dei singoli oggetti sia per quanto riguarda lo studio di intere popolazioni. Non abbiamo esplorato tutte le possibilità di studio ma quanto detto dovrebbe dare un’idea di quello che si può ottenere. Gli asteroidi meritano di essere studiati, come amo ripetere la migliore motivazione per fare la fotometria di un asteroide è che “non si può mai sapere quello che si troverà osservando quei piccoli punti di luce che si muovono in cielo!”.

La calibrazione delle immagini digitali

Per fare ottime fotografie a lunga esposizione degli oggetti del cielo profondo servono pochi ingredienti ma ben amalgamati: 1) Un cielo ottimo lontano dalle luci della città, 2) Una montatura equatoriale precisa che possa fare anche autoguida, 3) Una camera digitale, 4) Una buona tecnica di ripresa. In questa ricetta non trova posto l’elaborazione e non è un caso, perché una buona tecnica di elaborazione si impara con il tempo e può solo far uscire al meglio tutto il segnale raccolto durante la fase di acquisizione. Se non abbiamo fatto tutto per bene potremmo essere anche i maghi di Photoshop ma dai nostri scatti non uscirà niente di buono.

Una delle fasi più importanti della fotografia astronomica a lunga esposizione (quindi no imaging planetario) è la cosiddetta calibrazione, una tecnica che prevede di acquisire due – tre set di particolari immagini che hanno il compito di correggere gli inevitabili difetti del sensore e del campo. Sono passaggi che si potrebbero fare anche in fase di elaborazione, si potrebbe pensare, ma non daranno mai e poi mai gli stessi risultati di frame di calibrazione genuini ottenuti sul campo. Volenti o nolenti dobbiamo imparare come ottenere questi scatti perché fanno parte integrante della tecnica di ripresa. Ecco allora quali sono i frame di calibrazione e le loro caratteristiche. In seguito vedremo come applicarli.

 

Dark frame: sono immagini ottenute con il CCD al buio, con la stessa sensibilità, temperatura e durata delle immagini del cielo (che chiameremo anche immagini di luce) e servono per eliminare parte del rumore, cosiddetto termico, che si ripete uguale da una foto all’altra, spesso come pixel più luminosi della media. Il rumore termico si riduce con l’abbassarsi della temperatura del sensore, ma non sparirà mai a meno di usare l’azoto liquido e arrivare ad almeno -100°C. I dark frame, quindi, vanno ripresi (quasi) sempre, anche se sembra che non ve ne sia bisogno. Ce ne potremo pentire quando vedremo comparire, sulle immagini di luce sommate, il temutissimo rumore a pioggia anche con CCD molto evolute. Se il sensore ha il controllo della temperatura possiamo riprendere i dark frame anche con calma a casa e creare una vera e propria libreria da rinnovare una volta l’anno, risparmiando quindi molto tempo. Con le reflex digitali, che non hanno il controllo di temperatura del sensore, fare i dark frame è difficile e creare una libreria impossibile, per questo motivo si potrebbero preferire altri frame di calibrazione.

Un master dark frame ottenuto con una camera CCD ST-2000XCM, temperatura di -10°C e 720 secondi di esposizione.

Un master dark frame ottenuto con una camera CCD ST-2000XCM, temperatura di -10°C e 720 secondi di esposizione.

 

Bias frame: sono immagini ottenute con la stessa sensibilità dei frame da calibrare e con tempo di esposizione pari a zero o comunque il più basso possibile, con il sensore al buio. Questi frame hanno lo scopo di catturare solo il rumore introdotto dall’elettronica del sensore. Possono sostituire i dark frame in quelle circostanze in cui a dominare non è il rumore termico ma quello elettronico (pose brevi, sensore raffreddato a oltre -30°C, riprese fatte con reflex senza controllo di temperatura).

Un master bias ottenuto mediando 50 frame. Da notare il confronto con il master dark precedente. ebbene nascoste dai pixel caldi, anche in quello sono presenti le colonne di pixel caldi tipici del rumore dell'elettronica. Questa è la prova che un dark frame contiene anche l'informazione catturata dai bias e che i due set di calibrazione sono complementari.

Un master bias ottenuto mediando 50 frame. Da notare il confronto con il master dark precedente. ebbene nascoste dai pixel caldi, anche in quello sono presenti le colonne di pixel caldi tipici del rumore dell’elettronica. Questa è la prova che un dark frame contiene anche l’informazione catturata dai bias e che i due set di calibrazione sono complementari.

 

Flat field: sono essenziali per ogni fotografia, a volte persino quando si fanno riprese in alta risoluzione di oggetti estesi come il Sole, o riprese a grande campo con obiettivi grandangolari. Pochi astrofotografi sono consapevoli della trasformazione che subisce la propria foto quando viene corretta con degli ottimi flat field. Di questi, comunque, ne abbiamo già parlato, quindi non mi dilungherò. Sono delle speciali immagini ottenute con la stessa configurazione di quelle che vogliamo calibrare, in cui si punta una sorgente di luminosità fissa e uniforme su tutto il campo. I flat field mappano la sensibilità del campo inquadrato, includendo la differente risposta dei pixel, vignettatura e polvere lungo il treno ottico. Non possono quindi essere ripresi con calma a casa perché necessitano dell’identica configurazione ottica delle immagini di luce, compresa messa a fuoco ed eventuali filtri. Un buon flat field si ottiene con la sensibilità al minimo e impostando un tempo di esposizione tale per cui il picco di luminosità nell’immagine cada a circa 1/3 della scala per le reflex, a ½ per le CCD senza antiblooming (25-30 mila ADU) e circa 1/7 (8000 ADU) per le camere CCD (e CMOS) dedicate all’imaging estetico, quindi con porta antiblooming. L’unico legame con le immagini di luce è la stessa configurazione ottica: esposizione, sensibilità e temperatura possono variare, anche se per le camere CCD dotate di otturatore meccanico è meglio esporre per almeno 4-5 secondi ed evitare di riprendere quindi parte dell’otturatore che si apre.

Master flat field ottenuto facendo la media di 37 scatti da 5 secondi calibrati con master bias. I flat field devono essere sempre calibrati con i relativi dark o con i bias.

Master flat field ottenuto facendo la media di 37 scatti da 5 secondi calibrati con master bias. I flat field devono essere sempre calibrati con i relativi dark o con i bias.

 

Come nel caso delle immagini di luce, non si acquisisce una sola esposizione per ogni set di calibrazione, piuttosto almeno 10, meglio 20 immagini per ogni categoria. Il numero dipende da noi e non ha alcun legame con la quantità di immagini da correggere. Questo è molto importante per non introdurre nuovo rumore nei frame che vogliamo calibrare. La media (o mediana, nel caso di dark e bias) dei frame di calibrazione va a comporre quello che si chiama master. Ogni singolo scatto di luce deve venir calibrato, prima che sia combinato, con i relativi master (dark e/o bias, flat). Anche i flat field, che sono speciali immagini di luce, devono venir calibrati, prima di essere mediati e creare il relativo master, con un master dark frame o master bias frame. Di solito a questo intricato intreccio ci pensa il software usato ma meglio essere consapevoli di quello che andrà a fare.

Come si usano i frame di calibrazione? Quali servono per le nostre esigenze? Ci sono diverse combinazioni possibili. Ecco quelle consigliate, anche se ognuno di noi può fare le prove che vuole.

 

  • Camera CCD raffreddata con controllo della temperatura, con pose di luce più lunghe di 5 minuti e flat field esposti per non più di 20 secondi.

In questa situazione la combinazione migliore è quella di acquisire tutti i frame di calibrazione. I dark frame correggeranno le immagini di luce e i bias frame correggeranno i flat field. Poi i flat field calibrati verranno mediati e il master flat verrà applicato alle immagini di luce a cui sarà stato sottratto il master dark. I dark frame contengono anche l’informazione dei bias frame, cioè il rumore dell’elettronica, quindi quando li sottraiamo stiamo togliendo anche il bias. Il bias frame può sostituire i dark frame su pose di breve durata come quelle tipiche dei flat field. In questo modo evitiamo di dover riprendere dei dark frame anche per correggere i flat e possiamo usare i bias che sono sempre uguali poiché non dipendono dalla durata dell’esposizione, né dalla temperatura;

  • Camera CCD raffreddata con controllo temperatura, pose di luce più lunghe di 5 minuti e flat field più lunghi di 3 minuti.

Un’eventualità del genere si verifica quando si fanno riprese in banda stretta. In questi casi è meglio lasciar perdere i bias e riprendere dark frame sia per le pose del cielo che per i flat field. I due set sono indipendenti perché legati alla temperatura e al tempo di posa delle rispettive immagini da correggere. Si correggeranno quindi i flat field con i relativi dark frame e le immagini di luce con gli altri, poi si applicherà il master flat field a ogni singola immagine di luce;

  • Camera CCD raffreddata con esposizioni più brevi di 3-5 minuti. In questi casi i dark frame possono essere superflui, se la camera lavora a temperature molto basse. Flat field e immagini di luce possono quindi venir calibrati solo con i bias frame.
  • Reflex digitale.
    In queste circostanze i dark frame potrebbero non essere la scelta migliore perché se la temperatura del sensore cambia, anche di un paio di gradi, i benefici saranno sostituiti dai danni. L’unico rimedio è riprendere sempre flat field e bias frame, in buone quantità, e affidarsi anche alla tecnica del dithering in fase di acquisizione delle immagini di luce, per evitare il rumore a pioggia tipico di queste situazioni.

Sembra tutto molto complicato ma in realtà non lo è, grazie anche ai software che ci evitano di dover creare noi stessi i file master. L’importante, comunque, è prendere mano con la tecnica di acquisizione perché una mancanza sul campo ci potrebbe far buttare l’intera sessione. Per capire come fare poi la calibrazione attraverso i programmi astronomici avremo tante, troppe, notti nuvolose per studiare, tanto i file acquisiti non scapperanno dal pc.

 

 

Una libreria di miei fit grezzi per fare pratica

L’astronomia è condivisione, sia se la facciamo per hobby che per professione. La condivisione diventa necessaria quando parliamo di dati, di fotografie e di tutto ciò che può essere utile alla scienza o nell’apprendere nozioni in un campo nuovo. Se nessuno condividesse le proprie esperienze sarebbero molto pochi gli appassionati del cielo e ancora meno i progressi fatti dalla scienza negli ultimi secoli.

Spesso mi hanno chiesto quale fosse il segreto delle mie immagini, quale magica pozione utilizzassi per elaborarle. Molti sono infatti convinti che la magia di una foto la si crei nella fase di elaborazione, dove con qualche software potente come Photoshop potremo estrarre dettagli sorprendenti di una nebulosa, magari partendo da una sfocata fotografia a un segnale stradale. Certo, tutto è possibile, anche questo, ma credo che sarebbe bello partire da un’immagine reale e fare tutte quelle operazioni che non alterano il segnale catturato. L’obiettivo di un’elaborazione, sia pur estetica, di una fotografia astronomia dovrebbe essere quello di mostrare al meglio tutto il segnale catturato, senza cambiarlo, senza interpretare la realtà che resta quella che il nostro sensore digitale ha catturato. La tentazione di passare dalla fase di elaborazione a quella di fotoritocco può essere grande, soprattutto quando la nostra voglia di ottenere buoni risultati si trasforma in frustrazione vedendo in giro capolavori in apparenza irraggiungibili.

La fase fondamentale della realizzazione di un’ottima immagine astronomica si affronta sempre durante lo scatto, sul campo, spesso al freddo e all’umido. E’ una fase che spesso inizia prima dello scendere del buio, quando dobbiamo trovare il luogo adatto, privo di luci e di umidità, allineare il cercatore, collimare lo strumento (se serve), stazionare in modo perfetto la montatura verso il polo, scegliere il soggetto migliore per la serata e la strumentazione, che deve avere certe caratteristiche, impostare la guida, curare l’inquadratura, la messa a fuoco e poi sperare che per almeno 3-4 ore vada tutto bene, perché quando tutto funziona ed è stato ottimizzato l’unico segreto è questo: esporre, esporre ed esporre per 3-4-5 e più ore. Solo in rarissimi casi si possono ottenere splendide fotografie con un tempo di integrazione totale inferiore a un’ora e sempre la potenziale bellezza di uno scatto aumenta all’incrementare del tempo che gli dedichiamo, non di fronte al computer a elaborarlo ma sotto il cielo, a raccogliere fotoni che hanno viaggiato per migliaia o milioni di anni luce.

Proprio per dare un punto di riferimento a chi cerca di addentrarsi nel mondo della fotografia a lunga esposizione del profondo cielo o per tutti coloro che vogliono capire come migliorare i propri risultati, ho messo a disposizione una serie di fit scattati al cielo coon differenti strumenti e sensori. Per questioni di spazio non ho potuto mettere a disposizione i file singoli con i frame di calibrazione ma solo i file grezzi calibrati e sommati. Potete utilizzarli per fare pratica, divertirvi con gli amici, provare a scovare (e ce ne sono molti) i difetti. Potete pubblicarli per uso non commerciale citando sempre l’autore. Non dovete mai, in nessun caso, eliminare i riferimenti per l’autore o, peggio, spacciarli per vostri perché se vi becco sono cavoli amari 🙂 .

Alcune immagini non le ho elaborate neanche io ancora, per mancanza di tempo, quindi non ho la minima idea di come potranno venire. Molte altre, invece, le trovate elaborate nella mia gallaery su astrobin: http://www.astrobin.com/users/Daniele.Gasparri/collections/253/

Ecco l’elenco completo da cui poter scaricare le immagini. I file sono compressi in formato zip. All’interno troverete il file fit. Ho scelto questo formato, che Photoshop non legge a meno di scaricare il programma gratuito Fits Liberator, perché è lo standard internazionale per tutti i dati astronomici. Tutti i software appositi lo leggono, compreso Deep Sky Stacker, Nebulosity, Iris, Registax, MaxIm DL, PixInsight, AstroArt…

Mettete questo post tra i preferiti perché con il tempo verrà aggiornato con nuovi scatti, compresi quelli in alta risoluzione:

Come fotografare in modo spettacolare i colori delle stelle

Fare foto al telescopio, inseguendo nebulose, galassie e ammassi stellari è il sogno proibito di molti appassionati di astronomia, che spesso si infrange di fronte alle difficoltà tecniche, strumentali ed economiche richieste. Non si deve avere fretta, è un percorso che va fatto con pazienza e determinazione: questo è quanto viene detto sempre. Sì, d’accordo, ma da qualche parte dovremo pur cominciare, no? Magari abbiamo a disposizione una reflex digitale e un piccolo telescopio e ci piacerebbe iniziare a fare qualche semplice scatto, giusto per provare.

Di solito si comincia a fare foto alla Luna, poi a qualche pianeta brillante. Per andare oltre e fare le lunghe esposizioni richieste per immortalare gli oggetti del cielo profondo serve un salto di qualità non indifferente: una montatura equatoriale molto robusta, uno strumento buono dal punto di vista ottico e meccanico, un sistema di controllo dell’inseguimento, detto autoguida. Il fiume da guadare è piuttosto largo e profondo, soprattutto se non disponiamo di una montatura equatoriale all’altezza.

Prima di decidere se accontentarsi di quello che si ha, o svuotare il portafogli e ipotecare il futuro con il proprio partner, che potrebbe non apprezzare la vostra decisione, possiamo dedicarci a un tipo di fotografia astronomica attraverso il telescopio che non richiede costosi strumenti, né complesse montature. Anzi, a dire la verità non richiede neanche di inseguire le stelle!

La tecnica che sto per descrivere è stata portata alla ribalta negli anni ’80 e ’90 da un astronomo dell’Anglo Australian Observatory, che i più esperti forse già avranno sentito nominare: David Malin. Munito di una semplice attrezzatura e un po’ di inventiva si era chiesto, grazie al suo background scientifico: è possibile riprendere il colore delle stelle in modo più efficace rispetto a quanto accade in una normale fotografia? Non è infatti difficile notare come molte delle foto del profondo cielo mostrino stelle tendenzialmente bianche. Solo con una grossa dose di manipolazione software i più bravi astrofotografi riescono a tirare fuori qualche tonalità, ma non è una strada molto agevole, né spettacolare.

Partiamo allora dal principio alla base di questa nostra nuova esperienza di fotografia astronomica: le stelle si mostrano di diversi colori. A parte gli astri di classe A, come Vega, che appaiono completamente bianchi, tutti gli altri puntini sono colorati, anche se i nostri occhi faticano a notare la tonalità a causa della scarsa saturazione e della minore efficienza del nostro sistema visivo in condizioni di bassa illuminazione. Le fotocamere, però, non hanno questi problemi e per di più potremo aumentare la saturazione quanto vogliamo in fase di elaborazione per esasperare le differenze di colore delle stelle. Non si tratta di un mero esercizio di astrofotografia e di elaborazione: i colori delle stelle, reali, dipendono dalla loro temperatura superficiale. Possiamo quindi fare anche della scienza dall’esperienza che stiamo per fare, cosa che non guasta mai.

Quando fotografiamo una stella ben messa a fuoco dal telescopio la sua luce si concentra in pochissimi pixel che spesso diventano rapidamente saturi, se non in fase di acquisizione quando andiamo a regolare curve e livelli con qualche software. Da questa considerazione è nata l’idea geniale di Malin: per mostrare il colore delle stelle dobbiamo far espandere la loro luce su un’area maggiore, in modo che non si rischi di saturare i pixel. Il metodo migliore per fare questo prevede di sfocare leggermente l’immagine: semplice quanto efficace. Per dare un tocco estetico alla nostra futura foto, la tecnica di Malin considera un dettaglio geniale: la sfocatura progressiva, senza il moto di inseguimento delle stelle.

Ecco quindi quello che dobbiamo fare:

  • Colleghiamo la nostra reflex al telescopio. Se non sappiamo come fare, siamo nel posto migliore: contattate i tecnici di Teleskop Service Italia che vi consiglieranno gli accessori necessari (sono tutti economici). Il telescopio più adatto, al contrario di quelli usati per fare ottime foto al cielo, è un rifrattore, anche di piccolo diametro e non necessariamente apocromatico. In linea di principio, comunque, tutti gli strumenti vanno bene, compresi obiettivi e teleobiettivi fotografici;
  • Scegliamo un campo ricco di stelle brillanti. In queste serate autunnali le Pleiadi o il doppio ammasso del Perseo sono perfetti, se lavoriamo almeno a 400 mm di focale. Se abbiamo un campo molto largo perché usiamo un teleobiettivo, meglio andare verso la cintura di Orione;
  • Mettiamo a fuoco come se dovessimo scattare una perfetta foto astronomica, aiutandoci con la modalità live view;
  • Impostiamo sensibilità almeno a 400 ISO, modalità di scatto in formato RAW e posa Bulb. Meglio avere un telecomando per controllare l’esposizione della reflex senza doverla toccare. In mancanza di telecomando ci dobbiamo accontentare della posa massima consentita: 30 secondi, e dell’autoscatto;
  • Appena iniziamo lo scatto disattiviamo il moto di inseguimento siderale. Possiamo in ogni caso selezionare la modalità autoscatto, anche con il telecomando della reflex, e avere qualche secondo di tempo per disattivare il moto orario prima che inizi lo scatto. Si può anche provare a fare una variante interessante: 10 secondi di foto con messa a fuoco perfetta e moto orario acceso e poi il resto (sempre in uno scatto singolo) senza inseguimento e con la sfocatura progressiva che stiamo per vedere;
  • Toccando molto leggermente il focheggiatore, mentre la posa va avanti e le stelle si sposteranno, variamo in modo continuo e molto delicato la messa a fuoco, fino al termine dello scatto, compreso tra i 60 e i 120 secondi. Il fuoco non dovrebbe variare moltissimo, ma di quanto ruotare la manopola del focheggiatore lo capiremo dopo il primo tentativo. Ora osserviamo il risultato ed emozioniamoci, perché abbiamo fatto una foto sia artistica che scientifica, molto più didattica di tanti scatti fatti da astrofotografi esperti e purtroppo così pieni di elaborazione da aver perso quasi del tutto il contatto con la realtà.
Gli spettacolari colori delle Pleiadi, catturati con la tecnica descritta nel post attraverso un rifrattore da 106 mm e Canon 450D. Posa singola di circa 90 secondi.

Gli spettacolari colori delle Pleiadi, catturati con la tecnica descritta nel post attraverso un rifrattore da 106 mm e Canon 450D. Posa singola di circa 90 secondi.

 

Cosa accade in pratica quando applichiamo questa tecnica? La non compensazione del moto terrestre produce sul sensore le classiche tracce stellari. La sfocatura progressiva durante l’esposizione trasforma le tracce in tanti piccoli coni, la cui larghezza e lunghezza dipendono dal tempo di esposizione e dall’intensità della sfocatura. In questo modo la nostra immagine contiene molta più dinamica rispetto a una classica posa: le stelle più brillanti mostreranno il colore nella parte terminale del cono, quando la loro luce si sarà distribuita su un numero sufficientemente grande di pixel per evitare la saturazione. Le stelle più deboli avranno coni più brevi ma sempre colorati, soprattutto nella parte iniziale vicina al punto di fuoco.

La fase di elaborazione, spesso temuta e odiata, è semplicissima, anche se abbastanza importante. La saturazione dei colori delle stelle è per natura piuttosto contenuta. A questo però è facile porre rimedio con qualsiasi programma di elaborazione delle immagini. E’ infatti sufficiente aumentare la saturazione del colore di almeno il 50% per far emergere finalmente un campo pieno di evidenti sfumature e affascinanti contrasti. Non è necessario fare altro.

I colori delle stelle e l’estetica dell’immagine risultante dipendono dalla lunghezza e dalla larghezza dei coni stellari, quindi dalla focale di ripresa, dal tempo di esposizione, dall’intensità della sfocatura. Le variabili in gioco sembrano complicare la nostra ripresa, ma questa è una delle rare e piacevoli situazioni nelle quali la pratica è molto più semplice di qualsiasi spiegazione.

Qualcuno riconosce il campo inquadrato? La scala è la stessa della fotografia delle Pleiadi, solo che in questo caso ci sono molti più colori: è un vero spettacolo!

Qualcuno riconosce il campo inquadrato? La scala è la stessa della fotografia delle Pleiadi, solo che in questo caso ci sono molti più colori: è un vero spettacolo!

Il consiglio principale, quindi, è quello di fare esperienza e dare sfogo alla vostra fantasia. Sono sufficienti pochi minuti ed un paio di tentativi per trovare già il giusto compromesso che soddisfa il vostro gusto estetico. E, chissà, proprio come accade in altri ambiti della società, i nostri scatti creativi potrebbero riportare di moda questa tecnica, che molti nativi digitali, purtroppo, neanche conoscono. Eppure è utile, divertente e piuttosto artistica. A questo punto, allora, osservando i nostri capolavori un paio di domande sono obbligatorie: a quali temperature corrispondono i colori che stiamo osservando? Sono più calde le stelle rosse o blu? E di quanto? Scopriamolo da soli con enorme soddisfazione: è il bello dell’astronomia amatoriale!

Cosa sono e come ottenere ottimi flat field

Chi si interessa di astronomia pratica e magari ha amici astrofotografi, avrà di certo sentito nominare i frame di calibrazione, in particolare i flat field. Chi ha iniziato a fotografare da poco avrà già individuato in queste due strane parole un nemico troppo grosso da sconfiggere, tanto che potrebbe pure aver deciso di voltarsi dall’altra parte e di far finta che non esita. Chi fotografa da più tempo, o chi si impegna nel campo della ricerca con mezzi amatoriali, ha capito come padroneggiarli, ma fatica ancora a reputarli tanto importanti da meritare di essere diffusi come se fossero il verbo supremo della fotografia a lunga posa degli oggetti celesti. In questo post capiremo cosa sono i flat field, perché sono importanti e come farli diventare le nostre migliori risorse per trasformare un’immagine astronomica in un potenziale capolavoro.

 

Cosa sono i flat field

I flat field sono delle speciali immagini di calibrazione che hanno l’unico compito di mappare le differenze di sensibilità dei pixel del CCD e le disomogeneità del piano focale. Tra queste rientrano difetti sempre presenti come la vignettatura, ovvero una caduta di luce ai bordi, ma anche polvere e sporcizia depositati sui filtri, sui correttori o sulla finestra del CCD stesso.

A parte la differente sensibilità dei pixel, tutti gli altri difetti da correggere dipendono in modo critico dal setup utilizzato, dall’orientazione della camera e dalla messa a fuoco. Basta variare anche di poco il punto di fuoco, ad esempio, per avere una diversa forma della polvere e della sporcizia sul campo ripreso; è sufficiente ruotare di qualche grado la camera per cambiare l’orientazione della vignettatura e dell’eventuale polvere e rendere quindi impossibile una correzione dell’immagine.

La prima regola, fondamentale, per i flat field è quindi la seguente: questi devono essere ripresi con lo stesso setup delle immagini che vogliamo correggere, con la medesima messa a fuoco e orientazione della camera. Al limite, se si fanno riprese RGB con ruota portafiltri e filtri parafocali, è ammesso fare i flat field, per ogni filtro, alla fine della sessione di ripresa, anche se sarebbe preferibile, soprattutto per lavori di precisione, fare flat field per ogni filtro prima di cambiarlo e passare a fare riprese con il successivo

 

I flat field servono davvero?

Per molto tempo, soprattutto a causa della relativa difficoltà nel fare corretti flat field, si è diffusa la versione astrofotografica della classica leggenda della volpe e dell’uva: fare dei buoni flat è difficile, quindi non sono poi così necessari. Basta saper usare Photoshop o PixInsight e tutto si risolve con dei bellissimi flat sintetici. Questa è una cosa orribile da dire e persino da pensare: toglietevi dalla testa di poter fare a meno dei flat field e di poterli creare con qualche programma di elaborazione. Nessun osservatorio professionale e nessun astrofotografo di alto livello fanno una cosa del genere e un motivo c’è. I flat field sono infatti fondamentali per ottenere immagini scientificamente accurate ma anche godibili dal punto di vista estetico, soprattutto per soggetti deboli. Chi non riesce ad apprezzarli, magari suggerendo di farli sintetici con qualche programma, non ha mai visto un buon flat field e il vero e proprio miracolo che può fare alle nostre immagini. Su questo punto, quindi, non si discute: sia che voi siate astrofotografi con ambizioni altissime o appassionati della domenica che scattano con un astroinseguitore e qualche malandato obiettivo fotografico ogni morte di Papa, i flat field sono l’unico vero strumento che può  trasformare ogni vostra foto in un potenziale capolavoro: non c’è elaborazione successiva che possa sostituirli.

Ecco allora la seconda regola: tutti coloro che fanno riprese del cielo profondo dovrebbero imparare a riprendere i flat field e usarli per correggere le proprie immagini. Per tutti si intende sia chi usa un telescopio che chi si accontenta di un obiettivo a grande campo.

 

I flat field eliminano tutti i gradienti di luce dovuti alla strumentazione usata. Non eliminano i gradienti presenti nel cielo ma cancellano polvere e vignettatura, e questa è un grandissimo aiuto per tutti i soggetti molto deboli.

I flat field eliminano tutti i gradienti di luce dovuti alla strumentazione usata. Non eliminano i gradienti presenti nel cielo ma cancellano polvere e vignettatura, e questa è un grandissimo aiuto per tutti i soggetti molto deboli. A sinistra un’immagine senza calibrazione con master flat field. A destra la stessa immagine calibrata: i dettagli sono molto più evidenti e il gradiente di luce con simmetria circolare è completamente sparito.

 

Un flat ti salva la vita: quando gli oggetti sono deboli, il campo pieno di polvere e il telescoio vignetta che è una bellezza, solo un buon flat field può salvare la nostra serata e mostrarci dettagli sull'oggetto catturato che non credevamo possibili. A inistra una situazione in apparenza compromessa. A destra la stessa immagine dopo la correzione con un buon flat field. Una trasformazione del genere non sarebbe  mai stata possibile a posteriori con nessun programma di elaborazione. Se pensate che una situazione del genere sia un'eccezione vi sbagliate. Anche se non ve ne accorgete, ogni immagine nasconde schifezze del genere che devono e possono essere corrette solo con un buon flat field.

Un flat ti salva la vita: quando gli oggetti sono deboli, il campo pieno di polvere e il telescoio vignetta che è una bellezza, solo un buon flat field può salvare la nostra serata e mostrarci dettagli sull’oggetto catturato che non credevamo possibili. A inistra una situazione in apparenza compromessa. A destra la stessa immagine dopo la correzione con un buon flat field. Una trasformazione del genere non sarebbe mai stata possibile a posteriori con nessun programma di elaborazione. Se pensate che una situazione del genere sia un’eccezione vi sbagliate. Anche se non ve ne accorgete, ogni immagine nasconde schifezze del genere che devono e possono essere corrette solo con un buon flat field.

 

Come fare un buon flat field

La nostra terza regola è semplice, ma richiederà diverse spiegazioni: un flat field è un’immagine di una sorgente uniformemente illuminata, priva di stelle, effettuata alla giusta esposizione, con il medesimo setup utilizzato per riprendere l’immagine che vogliamo correggere.

In questa frase si nascondono tutte le difficoltà nel riprendere un corretto flat field. Per non creare dispersione con parole superflue, vediamo le tappe fondamentali da seguire e i concetti da fissare bene in mente:

  • Un flat field è di fatto una particolare immagine di luce. E cosa abbiamo imparato dalla fotografia astronomica? Che in generale una buona foto è la media di diversi scatti che consentono di ridurre il rumore e che a questi scatti bisogna sottrarre il dark frame. Ecco allora la quarta regola: un buon flat field si ottiene dalla media di almeno una ventina di singoli scatti, tutti uguali, a cui poi sottraiamo il relativo master dark frame, ottenuto dalla mediana di almeno 5-7 scatti. In pratica bisogna trattare i flat field come se fossero una sessione (particolare) di fotografia astronomica. Al limite, soprattutto se usiamo una reflex, possiamo sostituire i dark frame con i bias frame: l’importante è che i singoli scatti di flat siano calibrati o con i dark o con i bias. Una volta eseguite queste operazioni possiamo mediare i flat calibrati, senza effettuare alcun allineamento, e si costruisce il nostro bellissimo master flat field. Molti software generano il master flat field in modo autoatico prima di calibrare i frame di luce, quindi di questa operazione possiamo non farci carico noi, a meno che non vogliamo avere il pieno controllo su quello che accade (e non è una cattiva idea questa!);
  • Il master flat field viene normalizzato al valore medio di ADU pari a 1 e poi diviso dall’immagine che vogliamo correggere. Questa operazione viene fatta dal software che si utilizza e noi non dobbiamo preoccuparcene più di tanto perché, se tutto è stato fatto nel modo giusto, l’immagine corretta presenterà un fondo cielo privo di vignettatura e di zone più chiare o scure dovute a polvere o sporcizia. Tutto molto semplice, vero? Abbiamo già finito, siamo tutti contenti… Non proprio.
A sinistra un singolo frame di flat field ben eseguito. A destra la media di 35 singoli scatti. Soffriamo già molto per far uscire un minimo di segnale dai soggetti astronomici con ore e ore di posa, non roviniamo tutto con dei flat non buoni: mediamo molti scatti per non aggiungere rumore.

A sinistra un singolo frame di flat field ben eseguito. A destra la media di 35 singoli scatti. Soffriamo già molto per far uscire un minimo di segnale dai soggetti astronomici con ore e ore di posa, non roviniamo tutto con dei flat non buoni: mediamo molti scatti per non aggiungere rumore.

Se siete stati infatti ben attenti, non vi ho detto come fare nella pratica un buon flat field: è questo il punto più delicato. Ecco allora qualche spunto per non dover diventare matti:

  • Flat box o generatori di flat field: sono una delle più grandi novità dell’astrofotografia dopo la maschera di bahtninov, un’idea semplice ma che ha rivoluzionato il modo di fare i flat field. Si tratta di speciali tappi da applicare all’obiettivo del telescopio, con dei led all’interno che illuminano una superficie semitrasparente che ne
    Generatore di flat field d aporre di fronte l'obiettivo del telescopio e con luce regolabile in intensità

    Generatore di flat field d aporre di fronte l’obiettivo del telescopio e con luce regolabile in intensità

    diffonde la luce in modo uniforme. Sono molto semplici e comodi da usare, non richiedono una lampada esterna, una superficie illuminata e neanche di spostare il telescopio, così possiamo fare i flat field tra un filtro e un altro senza perdere il puntamento;

  • Fogli o magliette bianche: sono i metodi storici, decisamente meno comodi delle flat box, e vanno bene per tutti gli strumenti, sebbene siano più indicati per diametri superiori ai 15 cm, per i quali costruire (o comprare) una flat box può essere dispendioso. In questi casi ci si arrangia: si pone di fronte al telescopio un foglio da disegno o un semplice A4 (dipende dalla larghezza dell’obiettivo), bloccandolo con una punta di nastro adesivo. Ci si assicura che l’obiettivo non sia ostruito dal nastro e che il foglio sia ben in tensione, poi si pensa alla fonte di luce: una normale lampada a LED, persino il flash della fotocamera del proprio cellulare, ad almeno a un metro di distanza e sistemata da qualche parte in modo stabile (ad esempio su un piccolo treppiede, su un muro, sul tetto della macchina…). È fondamentale che il fascio di luce sia perpendicolare al foglio che copre il telescopio per assicurare un’illuminazione omogenea: sarà quindi necessario portare il tubo ottico parallelo al terreno. Si può sostituire, soprattutto in caso di emergenza, il foglio da disegno con una maglia bianca, ancorata al tubo con abbondante nastro adesivo per assicurare che sia ben tesa e che non presenti pieghe di fronte all’apertura del telescopio.

 

Il tempo di esposizione

Eccoci arrivati alla questione più importante di tutte, all’operazione che se non è fatta bene può rovinare tutto quello che è stato eseguito fino a questo momento, compresi gli scatti che vogliamo calibrare con i nostri flat field. Trovare il giusto tempo di esposizione per i flat field sembra quasi un’oscura arte, ma con un po’ di nozioni sui sensori digitali e le loro proprietà possiamo fare chiarezza una volta per tutte.

Intanto iniziamo subito con il dare informazioni sulla durata minima degli scatti, che è determinata dalla velocità degli otturatori. Una buona regola empirica ci dice che il tempo sotto il quale non bisogna mai scendere è pari a circa 100 volte quello minimo che è possibile scattare. Questo accorgimento evita di riprendere di fatto l’immagine dell’otturatore che libera prima una parte del campo e poi l’altra, falsando i nostri flat field (l’otturatore non può sparire all’istante!). Per le reflex, capaci di scatti di 1/4000 di secondo, possiamo usare scatti da 1/40 di secondo in su. Per le camere CCD astronomiche dotate di otturatore meccanico parliamo di almeno 4-5 secondi. Per le camere digitali non dotate di otturatore è meglio stare almeno tra i 5 e i 6 secondi. Possiamo aumentare quanto vogliamo l’esposizione ma non dovremo mai andare sotto questi valori.

L’altro fattore che ci permette di scegliere il giusto tempo di esposizione, e/o la potenza della luce, o la distanza della lampada, è rappresentato dalla dinamica del sensore digitale e su questo punto si sono narrate le più disparate leggende, spesso con molte imprecisioni.

Per chi fosse interessato, nel prossimo paragrafo ci sarà qualche spiegazione tecnica in più. Al momento, infatti, ci interessa il lato pratico e in questi casi la regola aurea è semplice: un buon flat field deve avere la luminosità di picco più alta possibile prima di uscire dall’intervallo di linearità del proprio sensore.

Il pregio di ogni sensore digitale, infatti, è di avere una risposta lineare, ovvero l’intensità del segnale è direttamente proporzionale alla luminosità reale della sorgente o, in alternativa, al tempo di esposizione. Così, se per un’esposizione di 5 secondi ho un segnale di luminosità pari a 5000 ADU, raddoppiando l’esposizione avrò un segnale di 10 mila ADU, esattamente il doppio. Analogamente, se raddoppio la luminosità della sorgente, a parità di tempo di esposizione, dovrò avere il doppio del segnale. In un mondo ideale tutti i sensori digitali sono perfettamente lineari fino a quasi i livelli di saturazione del contatore analogico-digitale (65535 ADU per contatori a 16 bit), ma nel nostro imperfetto mondo amatoriale non è così ed è qui che sorgono i problemi: se infatti i flat field non sono fatti nello stesso intervallo di linearità delle immagini che vogliamo correggerem non avremo mai una calibrazione perfetta. Questo inciderà, poi, sui dettagli visibili e sulla qualità generale delle immagini.

Dopo aver fatto lustri di esperienza con i più disparati sensori digitali, ecco le mie indicazioni:

  • Se disponete di una camera CCD (o CMOS) con la porta antiblooming e contatore analogico-digitale a 16 bit, un buon flat field dovrebbe avere luminosità di picco attorno agli 8-9000 ADU. Solo nel caso in cui il fondo cielo delle immagini da correggere oltrepassi questi valori (ma allora avremo sbagliato i tempi di esposizione) si possono ottenere flat field la cui luminosità media (questa volta MEDIA, non di picco) abbia valori più simili possibile al fondo cielo delle immagini da calibrare. Se preferiamo visualizzare l’istogramma invece dei numeri, allora nel primo caso, con il fondo cielo delle immagini da correggere basso, un buon flat si ottiene con l’istogramma a circa 1/6 della scala massima;
  • Se disponete di una camera CCD senza porta antiblooming, quindi di grado scientifico, le cose sono molto semplici: un buon flat field si ottiene con un’esposizione che permette di arrivare a una luminosità di picco pari a circa la metà della luminosità massima consentita, meglio se un poco meno. Per convertitori analogico-digitali a 16 bit questo significa avere picchi di luminosità tra i 25 mila e i 30 mila ADU. Per gli amanti dell’istogramma, il picco dovrebbe stare circa a metà;
  • Per le reflex digitali varrebbe il punto 1) ma a causa del contatore a 14 bit i valori sono tutti scalati e non sempre di facile lettura perché molti software poi convertono la luminosità in scala a 16 bit. Per tagliare la testa al toro, quindi, meglio guardare l’istogramma, che dovrebbe stare a circa 1/3 della scala massima. Si tratta di valori leggermente superiori rispetto al caso 1) perché bisogna fare i conti anche con il rumore di questi sensori: avere flat troppo deboli potrebbe causare più problemi che altro. In questo caso gli scatti dovrebbero essere fatti a ISO bassi (non bisogna scattare alla stessa sensibilità dei frame da correggere, per i flat non serve, anzi, è deleterio perché introdurrebbe rumore) e in modo automatico, facendo scegliere alla fotocamera l’esposizione corretta, magari dicendole di sottoesporre di 1 stop. Se si usano obiettivi o teleobiettivi, il diaframma, invece, deve essere lo stesso usato per fare le foto che si vogliono calibrare. Anche in questi casi, se si è fatto l’errore di fare riprese astronomiche con un fondo cielo molto luminoso, i flat field dovrebbero avere un istogramma il cui picco cada nella stessa zona di luminosità.

È molto importante, una volta trovata l’esposizione giusta, a prescindere dal sensore usato, raccogliere almeno una ventina di flat field, meglio se sono 30: più ne medieremo e migliore sarà il risultato finale.

Queste sono indicazioni generali che vanno bene per tutti i casi. Ciò non toglie che ognuno di noi possa sperimentare: cosa succede ad esempio, se eseguo due set di flat identici, uno con la giusta esposizione e un altro invece con l’istogramma a 2/3 della scala? Funzionano lo stesso? Potrebbe essere, perché tutto dipende dalle proprietà del proprio sensore digitale. I valori dati, quindi, vanno bene in generale sempre, ma non è detto che siano gli unici possibili.  Se vogliamo andare nel dettaglio e capire meglio la storia della giusta esposizione dei flat field, dobbiamo comprendere meglio come funziona un sensore digitale e la sua elettronica.

 

 ADU e full well capacity: andiamo un po’ più a fondo

Ogni sensore digitale cattura la luce attraverso l’effetto fotoelettrico, descritto in modo completo per la prima volta da Albert Einstein nei primi del ‘900 (e che gli valse il premio Nobel). In pratica, per certi materiali, come il silicio, la luce visibile che li colpisce riesce a strappare un numero di elettroni dal reticolo cristallino proporzionale all’intensità della sorgente. Applicando una differenza di potenziale agli estremi del materiale, gli elettroni strappati via vengono fatti fluire ai lati, quindi raccolti, conteggiati e trasformati in segnali luminosi digitali, grazie al contatore analogico-digitale.

 

Ogni pixel di un sensore ha un numero finito di elettroni che può catturare. Quando il contenitore si riempie si arriva alla saturazione. Il numero di elettroni che può contenere un pixel è chiamato Full Well Capacity. L’elettronica del CCD trasforma il numero di elettroni in livelli di luminosità. Per i sensori astronomici i livelli di luminosità disponibili sono in generale 65536, pari a 16 bit. Un’elettronica fatta bene dovrebbe allora riempire questi livelli in modo tale che alla luminosità 0 corrisponda un pixel senza elettroni raccolti e al valore 65535 il massimo numero di elettroni che il pixel contiene. In questo modo si ha la massima efficienza nel convertire la full well capacity in dinamica reale dell’immagine.

Per fare questa operazione in modo adeguato, l’elettronica si serve di quello che viene chiamato guadagno. Si tratta di un coefficiente moltiplicativo da applicare al numero di elettroni raccolti, il cui meccanismo è molto semplice da comprendere. Supponiamo di avere un sensore con full well capacity di ogni pixel pari a 100 mila elettroni, e supponiamo di voler distribuire al meglio tutta questa dinamica nei 65536 livelli di grigio disponibili in un convertitore a 16 bit. Affinché si sfrutti al meglio questo contenitore, occorrerà stipare 100 mila elettroni in 65536 livelli di luminosità, ovvero assegnare a ogni livello di luminosità 1,5 elettroni. Questo è il guadagno: il numero di elettroni necessari per far conteggiare un livello di luminosità al contatore analogico digitale. In un mondo ideale, quindi, parlare di full well capacity in termini di elettroni o di livelli di luminosità è uguale.

In un mondo reale le cose non stanno così perché il guadagno di un sensore non è mai impostato in modo così preciso da far coincidere la saturazione reale dei pixel con quella del contatore analogico-digitale. Di solito si tiene un po’ di margine, assicurandosi che la saturazione reale avvenga prima di quella del contatore. Di conseguenza, per molte camere CCD già verso i 50 mila ADU si ha di fatto la saturazione ma i valori possono cambiare di molto da modello a modello. In questi termini, parlare di ADU come il discriminante per un buon flat field è, a voler essere pignoli, un po’ approssimativo. Quando ad esempio ho detto che per camere senza antiblooming si dovrebbe arrivare a circa metà della dinamica, ci si dovrebbe riferire alla dinamica reale, ovvero al numero di elettroni e non al corrispettivo ADU, perché ci sono camere CCD che a 50 mila ADU presentano già saturazione e altre che lo fanno a 60 mila: in questi casi qual è il valore da prendere come riferimento per avere un flat field, esposto alla vera metà della dinamica? In realtà questa è una questione di “lana caprina” perché le differenze tra i CCD amatoriali non sono così grosse e delicate da rendere necessario l’uso poco pratico della dinamica reale in termini di elettroni e di fare poi la conversione attraverso il guadagno per capire a quanti ADU corrisponde il giusto intervallo.

Se siamo perfezionisti, tuttavia, un buon consiglio è di effettuare un test di linearità del nostro sensore. In questo modo, lavorando in ADU, possiamo vedere dove si verifica la reale saturazione e capire anche qual è la massima luminosità da poter utilizzare per i nostri flat field prima che la risposta cominci a diventare non lineare. Ecco quindi giustificati i valori dati in precedenza, un po’ conservativi e definiti indicativi per ottenere un buon flat field. Ecco, inoltre, giustificato il senso di un mio precedente post in cui si parlava di test di linearità e si arrivava a definire i valori ottimali per fare i flat field, che guardacaso corrispondono a quelli menzionati in questo caso e presi come universali.

Tutorial Heq5 Kit Cinghie Rowan

Abbiamo il piacere di presentarvi qui di seguito uno splendido articolo, scritto dal nostro amico Lorenzo Sestini, Presidente del Nuovo Gruppo Astrofili Arezzo, che gentilmente ci ho fornito il permesso di ripostare il suo articolo, apparso in originale sul blog dell’Osservatorio Astronomico di Arezzo, dal titolo “Tutorial Heq5 Kit Cinghie Rowan”.

Buona lettura!

 


 

Questo che vi propongo è una specie di istruzione di montaggio per il kit modifica cinghie Heq5 Pro Rowan Engineering Ltd acquistato da Telescope Service Italia.

Kit modifica cinghie Heq5 Pro Rowan Engineering Ltd

Non vi dirò se la montatura migliora o no, non ho ancora avuto modo di testare la suddetta modifica. Posso solo aiutarvi passo passo nel montaggio semplice. Chi ha dimestichezza non avrà nessun problema chi invece è poco “adatto” non deve avere timore. Se si segue questo tutorial passo passo non avrete problemi. Meglio comunque farlo fare ad un amico “smanettone”. Insomma se siete tipi da ufficio e calza maglia lasciate fare per non fare danni.

Vi dico subito che il kit è ben fatto, Tutto imbustato perfettamente con la divisione degli ingranaggi per Ar e Dec. State attenti a non invertire i pezzi che se a prima vista sembrano uguali in realtà non lo sono.

Ecco il kit Rowan a Cinghie.

Il kit in questione è stato montato da me con l’aiuto di Luca Vincenti.

Bene, nel frattempo aprite la vostra confezione e lasciate tutto da una parte.

Cominciamo a preparare la nostra bella Heq5 Pro.

Poniamo sopra un tavolo con la parte dei motori rivolta verso l’alto. Si può fare il tutto anche con la testa nel cavalletto ma fidatevi, fate in questo modo. Rischiate di perdere qualche vite. In questo modo vi rimane tutto nel tavolo.

Smontate le 6 viti del coperchio copri motore. Queste poi riponetele in una bustina. Non vi serviranno più.

Una volta aperta noterete subito il grasso sporco, o pulito, a seconda di quanto nuova è la vostra montatura, che dovrete eliminare. Vale la pena avere le cinghi solo per non stare tutte le volte a ingrassare la montatura in questa parte di meccanica. Non scordatevi comunque che la vite senza fine ha bisogno di grasso.

Date una pulita con un panno.

Cominciamo a svitare. Quanto mi piace smontare, fin da piccolo smontavo tutto. Iniziamo dall’ingranaggio fissato nel perno della vite senza fine. Insomma l’ingranaggio più grande.

Prendete la chiave a brugola che viene data in dotazione con il kit e svitate.

Attenzione che ci sono due viti di fissaggio in questo ingranaggio. Svitate prima la vite che va nella parte piana dell’albero della vite senza fine. Poi l’altra. Niente di fondamentale importanza ma ricordo che il tutorial è per quelli da “ufficio”.

Una volta sfilato l’ingranaggio “viene via senza sforzo” pulitelo e scriveteci con un pennarello da dove lo avete cavato. Se qualche cosa andasse storto avrete sempre il vecchio kit pronto per il rimontaggio.

Procedete anche per l’altro ingranaggio.

Bene, ecco qua tutta la sporcizia sotto gli ingranaggi. Pulite! Svitate le due viti che vedete in foto della scocca anteriore della montatura. Poi girate la montatura e svitate le altre tre viti.

Le viti non sono uguali. Tre piu lunghe e 2 corte. Non mischiate. Una volta aperto il carter anteriore avrete modo di vedere il cuore della montatura. La scheda principale. Bene quelli che vedete sono tutti i collegamenti elettronici. I spinotti piu a destra e piu a sinistra sono rispettivamente Ar e Dec. Con l’aiuto di un cacciavite piccolo staccateli. Non tirateli dai fili!!! Ormai che ci siamo se volete illuminare il vostro canocchiale polare esiste il mini kit da attaccare nello spinotto con filo nero e rosso per attaccarcelo. Questo spinotto porta corrente al led dell’illuminatore polare.

Cominciamo a smontare un motore! Non abbiate paura. Non si rompe niente. Prima di smontarlo fate un pallino con un pennarello nero su dove stava alloggiato. Può servire anche se poi il montaggio è obbligato. “ufficio, ricordate”.

Svitate solo le tre viti che attaccano nel telaio della montatura. Sono tre! Non 4 come si potrebbe pensare con l’immagine sotto. Un foro è li per bellezza nel telaio.

Una volta preso in mano il motore puliamo, e svitiamo i due grani presenti laterali al motore sempre con la brugola in dotazione.

Una volta svitato i grani “senza cavarli dalla sede, puliamo tutta la sporcizia anche qui. Per grassi più ostinati utilizzare un pennellino con un pò di benzina.

Ecco pulito il tutto.

Avrete anche a parte un estrattore. Si può farne a meno ma per il costo che ha vi conviene comprarlo. Nella foto sotto ho provato il pezzo ma ancora aspettate ad utilizzarlo. Prima dobbiamo fare un altra operazione.

Dobbiamo smontare il carterino di alluminio del motore. Segnate in tutti e tre gli angoli con un pennarello. Fate dopo ricombaciare i segni per rimontarlo. Non occorre super precisione.

Svitate le viti a brugola e sfilate il carter di alluminio. Avrete cosi in mano il motorino passo passo nudo e crudo.

Inserite l’estrattore e con l’aiuto di un pappagallo tenete forte il pezzo. Avvitate con forza la vite e vedrete che il piccolo ingranaggio del motore si sfilerà piano piano.

Ecco qua!

Riponete tutti gli ingranaggi per bene in una bustina. Non mischiate con l’altro motore! Tre ingranaggi per movimento. Ar e Dec.

Inserite il primo ingranaggio del kit Rowan, e misurate con un calibro 5,5 mm dal motore. Miraccomando fate questa operazione con cura.

Stringete i grani del pezzetto e fate attenzione. Non strigete a morte perche sono piccoli e si rischia spanature. Due grani. Fate un pò alla volta, prima con uno e poi con un altro fino al completo serraggio.

Rimontate il carterino facendo attenzione ai segni del pennarello.

Inserite il pezzo di teflon. Attenzione qui perche ho trovato difficoltà all’inserimento. Il foro del carter e precisissimo. Si deve premere fortemente per infilare.

Fate un pò alla volta con l’aiuto di un martellino in gomma. Se andate troppo “giù” non si torna in “sù”. E’ talmente duro che con cavolo che riuscirte a sfilarlo di nuovo senza piegare niente. Fate piano piano e a occhio controllate che sia in linea con l’altro pezzo che avete montato prima.

Il rondellone o guida di teflon ha una contro battuta sotto. Fate in modo che non sia accostatissimo. Va allentato e fatto calare. Mi sono arrivati questi pezzo troppo serrati. Fate in modo che il rondellone di teflon ruoti bene, anche con un pò di gioco. E’ solo una sede! Non serve precisione al millimetro.

Non ci resta di rimontare il motore con le sue tre viti. Ricordate il pallino di riferimento. Attenzione ai cavi del motorino passo passo. Nel frattempo infilateli dentro per bene senza farli infrenare. Dopo li riprenderete dal d’avanti dellamontatura per riattacarli alle loro sedi. Inseriamo l’ulitmo ingranaggio nella vite senza fine.

In questo caso è solo infilato. Dovrete regolare l’altezza con i due grani di sotto. A occhio alzate e mettete in linea il tutto. Stringete prima il grano dove nell’albero è piana la sede. Poi serrate l’altro di controspinta.

Inserite la cinghia come in figura.

Figo no?

Ripetete il tutto con l’altro motore! Non cambia niente. solo che per la declinazione avremo il pezzo di teflon più piccolo.

Inserite lo spessore dato in dotazione e rimettete il coperchio con le viti in kit più lunghe e il gioco è fatto.

Ecco qua la nostra bella montatura modificata.

Abbiamo acceso subito la montatura e devo dire che vale la pena solo per non sentire più il rumore metallico degli ingranaggi. Ora è silenziosissima. Si sente solo i motorini passo passo già silenziosi di suo. Ora non resta che provare sul campo quanto possa migliorare per l’autoguida. Ai prossimi aggiornamenti.

Lorenzo Sestini.

 


Credit: http://www.lorenzosestini.it/tutorial-heq5-kit-cinghie-rowan.html

Collimazione facile e precisa di un Newton

Collimazione facile e precisa di un Newton

Nella grande panoramica dei telescopi, il Newton è da sempre considerato uno schema ottico che offre una buona apertura in rapporto al costo, grazie alla facilità nella costruzione, rispetto ad altri schemi (rifrattori, SC, etc).
Però la bestia nera della maggior parte degli astrofili è sempre lei: la collimazione.

“Il Newton è bello, tanta apertura, veloce anche in foto, universale, si, ma….”

Ma.
Ma collimiamolo facilmente! Da anni si legge su internet della collimazione dei newtoniani usando la barlow abbinata al collimatore laser. Personalmente ho sperimentato a fondo una combinazione delle 2 cose che vorrei proporvi, senza imbarcarsi in costosi collimatori dalle mille funzionalità, perché a volte si può avere molto con poco!

Setup usato:
Collimatore laser TSLA: http://www.teleskop-express.it/collimazione/226-tsla-ts-optics.html
Lente di barlow…qualsiasi! Io ne ho usata una molto economica: http://www.teleskop-express.it/barlow-e-riduttori/170-tsb21-ts-optics.html

Se poi proprio vogliamo giocarcela ancora meglio, sarebbe fantastico modificare il Newton con uno dei kit di collimazione Astronomy Expert ora disponibili per i GSO (in arrivo anche quelli Skywatcher a fine ottobre!)
http://www.teleskop-express.it/collimazione/2560-ae-collimation-tool-per-newton-gso-passo-metrico-astronomy-expert.html

collimatore per newton e barlow per collimazione telescopio newton

 

Step 1: collimazione del secondario

Iniziamo a collimare il secondario come sempre: inseriamo solo il laser nel focheggiatore e muoviamo le 3 vitine di regolazione del secondario, in modo portare il puntino rosso del laser al centro del bollino bianco incollato sul primario

collimazione_secondario_newton

Bene, ora siamo pronti per la collimazione del primario:

 

Step 2: collimazione del primario

Non tocchiamo il laser (assicuriamoci di averlo montato con la finestrella che guardi dalla nostra parte, mentre siamo posizionati sulla cella del primario) e dobbiamo operare come segue:

Sbloccare le viti di blocco del vostro newton, cella del primario (fare riferimento al manuale di istruzioni..o a noi!)
Portare il raggio laser verso il foro centrale di ritorno, come da immagini, usando le viti di collimazione della cella del primario (come prima, fare riferimento alle istruzioni o a noi per un aiuto)

collimazione_primario_1_newton

collimazione_primario_2_newton

A questo punto siete abbastanza collimati, ma non perfettamente, perché il laser ed i vari riduttori da 2” a 31,8mm hanno delle tolleranze meccaniche tra di loro che rendono la collimazione con il laser, sul primario, buona, ma non perfetta.

Raggiungiamo la perfezione!

 

Step 3: la collimazione fine del primario

Adesso rimuoviamo il laser e montiamo la nostra barlow sul telescopio, inserendo poi nuovamente il laser come se fosse un oculare. Accendiamo il laser e dovremmo vedere qualcosa di molto interessante.
La barlow ha l’effetto di “spalmare” il fascio del laser, che andando a proiettarsi sull’anellino bianco che va ad indicare il centro del primario, produce un’ombra. Essendo circolare il nostro bollino adesivo sul primario, il cerchio avrà anche un suo centro..ovviamente!
Guardate la figura: si vede la macchia del laser, con l’ombra del bollino del primario. Notate anche che al centro dell’ombra ci sono 3 cerchietti concentrici di diffrazione che vanno ad indicare il centro della nostra riflessione (se il bollino è posizionato bene è anche il centro del primario).

Dobbiamo portare questi cerchietti nel centro del foro di ritorno, usando le viti di collimazione del primario, in modo da avere una collimazione a prova di star test!

collimazione_primario_3_newton

notate come non è detto che l’ombra sia concentrica al foro, dalle mie esperienze ho potuto notare come è sempre meglio fare riferimento ai cerchietti centrali di diffrazione per ottenere un’ottima collimazione.

collimazione_primario_4_newton

Adesso facciamo la prova del nove, nel nostro caso posizionando il newton sul nostro banco ottico e..vediamo come va!

Come potete vedere dall’immagine, il telescopio è veramente molto ben collimato, semplicemente guardando il laser e le ombre di ritorno, senza andare ad impazzire con altri sistemi più o meno difficili o costosi.

collimazione_newton_star_test

ATTENZIONE: i giochi meccanici nella chiusura dei raccordi e del laser possono determinare un disassamento dello stesso con l’asse ottico del telescopio. Come potete vedere dalle immagini, nel newton di prova c’è un portaoculari classico con 2 viti di blocco. Con alcuni accorgimenti possiamo ottenere buoni risultati, senza dover andare ad adoperare dei sistemi di chiusura autocentranti (che avrebbero anche cattive ripercussioni sul backfocus disponibile).

Il riduttore da 2” a 31,8mm posizionatelo in modo che la vite vada tra le 2 del portaoculari da 2” del focheggiatore
Prima di serrare il riduttore da 31,8mm, con la mano, tenetelo per premuto sul portaoculari da 2” del focheggiatore, in modo da garantire la massima planarità
Quando inserire il laser e la barlow, il discorso è lo stesso: premeteli sempre nel portaoculari

Cosa succede se collimo bene, ma poi vedo che le figure di intra ed extra sono diverse? Avete il focheggiatore che non è montato in modo parallelo all’asse ottico!
Si può rimediare? Certamente, però è una bella rottura…soluzione? Semplice: se fate foto collimate con il focheggiatore in posizione di messa a fuoco, se fate visuale fatelo con il focheggiatore estratto nel punto di fuoco dato dall’oculare più potente che avete. In questo modo andate ad ottimizzare la collimazione nella posizione di fuoco durante l’utilizzo, avendo così la miglior resa possibile.

Se avete qualche domanda, dubbio, non esitate a scrivermi: rc@teleskop-express.it

I Newton odierni sono strumenti ottimi, che costano poco e possono dare tanto, usiamoli nel modo giusto!

Sistemi portatili per la fotografia astronomica..a confronto!

Chi si dedica alla fotografia astronomica, sia i più esperti che chi è agli inizi, deve fare i conti con l’autoguida e con la necessità di collegare la camera di guida a un computer che gestisca questa importantissima fase. Un notebook è obbligatorio per chi usa una camera CCD per fare riprese, mentre chi impiega le reflex ha a disposizione una soluzione chiamata autoguida standalone che permette, previa molta pazienza e/o denaro, di non utilizzare il computer.

Qualsiasi sia la vostra situazione, a meno di non disporre di un osservatorio privato (magari), usare un computer durante le sessioni di fotografia astronomica ha molti inconvenienti, tra cui:

  • Dover trasportare un pesante e ingombrante notebook con noi e sistemarlo in un luogo sicuro, che nel buio della notte e nelle impervie situazioni in cui piazziamo i telescopi (erba alta, alberi, terreno scosceso…) non è proprio semplice;
  • L’alto consumo di corrente, che supera spesso i 3-4 ampere e costringe a essere dipendenti dalla corrente elettrica o a viaggiare con ingombranti e pesanti batterie da auto per non rimanere a secco durante la notte.
  • Inoltre i notebook di solito hanno un’alimentazione superiore a 12V, il che rende necessario collegare un inverter ad una batteria (= altro esborso economico)

Fino a qualche anno fa non c’erano molte alternative: o un notebook, magari piccolino, o un’autoguida standalone che spesso, però, rappresenta quasi un terno al lotto perché è sicuramente più difficile da gestire rispetto a quanto possano fare software come MaxIm DL o PHD.

Oltre un anno fa, PrimaLuceLab ha introdotto sul mercato Eagle, un sistema che racchiude all’interno di un unico case modulare, un bridge di alimentazione, un vero e proprio computer desktop con Windows 10 Enterprise modificato e ottimizzato per Eagle e quindi per l’uso astronomico e la possibilità di installarlo in diversi punti tra montatura e telescopio grazie al sistema Plus. Eagle non è solamente un “contenitore”, ma al suo interno contiene una suite di diversi software oltre al fatto che possiamo installare tutti i programmi che vogliamo, inoltre potendo essere montato in modo solidale con il nostro strumento, possiamo staccare tutto insieme, riporre e…in 2 minuti abbiamo smontato e rimontato! Ovviamente come in tutte le cose ci sono i pro ed i contro, andiamo ad analizzarli.

Se Eagle rappresenta, al momento attuale, la più avanzata soluzione dedicata per l’astrofotografo itinerante, è anche vero che il costo non è detto che sia alla portata di tutti vista la mole di caratteristiche avanzate implementate. La domanda posta è: si riesce ad alleggerire lo stesso il setup, perdendo ovviamente di funzionalità complessive, ma ad un minor prezzo?

Ora ci sono i Windows Tablet, dei tablet che montano una versione ottimizzata (=depotenziata) di Windows, ma che sono pratici quanto un normale tablet Android o iOS. Una soluzione del genere permette di avere una versatilità simile a quella di un di un pc, sul quale possiamo installare i nostri programmi per la gestione della ripresa e della guida, con la comodità di un tablet, compreso un consumo nettamente ridotto rispetto ai notebook. Di fatto possiamo trasformare, almeno la fase di autoguida, come se fosse fatta con una camera standalone, solo che avremo la potenza di un software installato come PHD, l’economicità di una camera usb  con porta ST4 e la comodità di uno schermo LCD da almeno 7 pollici, senza gli ingombri e i problemi tipici di un computer, anche se dobbiamo vedere dove sistemare il tablet dato che non prevede sei sistemi di montaggio nativi sul nostro telescopio.

Ma se invece vogliamo tenerci il nostro PC/Tablet e abbiamo solo l’esigenza di ottimizzare il più possibile il setup (cavi, hub usb, bridge di alimentazione..), abbiamo una reale alternativa senza doverci autocostruire qualcosa noi?  Per fortuna si, ci ha pensato Geoptik con il Various power supply, che è un bridge di alimentazione avanzato con un hub usb integrato. Offre 4 prese USB 2.0, 1 uscita da 5A (jack 2.1×5.5), 2 uscite jack da 2A (2.1×5.5), 2 uscite per fasce anticondensa kendrik compatibili, 2 prese accendisigari, 1 uscita con regolazione del voltaggio (ideale per alimentare le reflex usando una falsa batteria) e di serie viene fornito con un cavo di alimentazione che si collega direttamene ad una batteria da auto, dato che il Varius alimenta tutto, dalla montatura alle camere CCD. Il various si può installare sul telescopio (non in modo solidale come Eagle, ma comunque ha una basetta per rimuoverlo facilmente) e tutti i device sono connessi a lui. Quindi esce un cavo usb che andrà al nostro PC/Tablet.

Per scrivere questo post mi sono indirizzato sul tablet più economico che si possa trovare in giro: si chiama Mediacom WinPad W700, un oggetto con schermo da 7 pollici, dotato di Windows 10 e dal prezzo di circa 40 euro (sì, 40 euro!). Dopo averlo provato per più di un mese posso dare qualche consiglio per farlo funzionare al meglio e per gestire, proprio come se fosse un normale pc, le fasi di guida e persino di acquisizione delle immagini, sebbene con qualche limite.

Il tablet ha un processore quadcore da 1,33 GHz, un GB di RAM e solo 16 GB di spazio disco, che può essere aumentato grazie allo slot per una microSD. Il punto debole di questa soluzione è la presenza di una sola porta micro-usb, quella che in pratica si usa per ricaricarlo. Come facciamo allora per farlo funzionare? E un GB di RAM basta per la nostra sessione di riprese?

Le risposte sono affermative, a patto di comprare qualche altro economico accessorio e di ottimizzare un poco il sistema operativo.

Il tablet Windows Winpad W700: la soluzione più economica per gestire le nostre sessioni di fotografia astronomica

Il tablet Windows Winpad W700: la soluzione più economica per gestire le nostre sessioni di fotografia astronomica

Ottimizzazione del sistema operativo

Windows 10, al contrario degli immediati predecessori, è un sistema leggero e stabile, che non ha problemi anche con driver vecchi (ci ho fatto girare camere SBIG del 2005). Il GB di RAM di cui è dotato il tablet è più che sufficiente se si disattivano servizi inutili come l’assistente vocale Cortana e si eliminano le (poche) animazioni grafiche. In questo modo il sistema operativo usa solo mezzo GB di RAM; il restante è tutto per noi e vista la leggerezza dei programmi di guida e di acquisizione è una quantità più che sufficiente. A meno che non si abbiano dei problemi di instabilità nativa che però non ho riscontrato sui due esemplari che ho testato, ci sono tre operazioni importanti da fare per rendere Windows ancora più veloce e stabile:

  • Disattivare l’avvio rapido del sistema operativo, che è attivato di default e che a volte può causare il riavvio improvviso del tablet poco dopo che è stato acceso (nelle opzioni di risparmio energia, alla voce Scegliere cosa fanno i pulsanti di accensione, si clicca su Modifica le impostazioni attualmente non disponibili e su Impostazioni di arresto deselezionare Avvio Rapido);
  • Se si utilizza solo per le sessioni fotografiche, il consiglio è di tenerlo scollegato dalla rete internet e in questo modo NON fargli mai scaricare gli aggiornamenti di Windows, che tendono a essere pesanti e a riempire il poco spazio disponibile. Questo non toglie che sul campo potremo collegarlo via wireless a una rete locale e così controllare con il nostro smartphone da dentro la macchina o dentro casa come sta andando la sessione di ripresa (su questo tornerò alla fine del post);
  • Disattivare la sospensione automatica dopo qualche minuto e attivare solo lo spegnimento dello schermo. In questo modo eviteremo la possibile sospensione dell’attività durante le sessioni di fotografia e allo stesso tempo faremo spegnere lo schermo al tablet quando tutto andrà bene durante la serata e non ci sarà bisogno di toccarlo;
  • Attivare la modalità Desktop di default (Impostazioni à Sistema à Modalità tablet e alla voce All’accesso impostare Vai al desktop). Windows può essere usato anche in modalità tablet ma questa soluzione per i nostri scopi è molto scomoda; meglio usare il classico ambiente che abbiamo a disposizione su ogni computer.

 

A confronto:

  • Eagle: è un sistema completo e modulare, che si monta direttamente sul nostro telescopio, ottimizzando trasportabilità, funzionalità e possibilità di automazione
  • Tablet: può gestire solamente ed in modo “basilare” le funzionalità di acquisizione e autoguida, inoltre non si può montare sul nostro telescopio in modo solidale.
  • Varius: essendo un bridge avanzato di alimentazione con hub usb integrato, esce solo un cavo verso il nostro PC/Tablet (il Tablet può essere anche quello proposto, per dire). Il Varius ha una basetta per poterlo installare sul nostro strumento, ma poi va rimosso, non essendo solidale come Eagle.

 

L’ alimentazione

La batteria del tablet dura poco, circa 3 ore se si utilizza in modo normale e per di più non ci sono porte usb per collegare la nostra strumentazione. Come facciamo? C’è una soluzione rapida, leggera ed economica.

Per l’alimentazione possiamo comprare un economico power bank. Il tablet in autoguida e con schermo spento consuma circa 0,7 Ampere. Un power bank da 5 Volt (il tablet va a 5 Volt) e 13-15 Ampere costa una ventina di euro (https://www.amazon.it/EasyAcc-Brilliant-Caricatore-15000%C2%A0mAh-Smartphone/dp/B00M8UFTQA/ref=sr_1_2?s=electronics&ie=UTF8&qid=1474975624&sr=1-2&keywords=power+bank+15000) e consente di avere l’alimentazione per circa 18 ore, a cui aggiungere le tre ore della batteria del tablet, per un totale di almeno 20 ore, a essere piuttosto conservativi: in pratica ci possiamo fare tranquillamente due notti senza ricaricarlo. Ovviamente questo calcolo si applica solamente alla batteria del tablet, se ci colleghiamo altri device (montatura, etc) la durata si ridurrà.

A confronto:

  • Eagle: avendo un bridge di alimentazione integrato, alimenta dalla montatura alla camera ccd raffreddata, basta collegarlo ad una fonte di alimentazione adeguata. Tutti i cavi di alimentazione dei nostri device partono da Eagle. Può fornire una potenza di alimentazione di 3A e 5A a seconda della porta utilizzata.
  • Tablet: non prevede nativamente di alimentare il nostro setup, quindi dobbiamo prevedere di creare un sistema per alimentare i device che però non richiedono un’assorbimento di oltre 500mAh, dato che saranno collegati all’hub usb esterno, mentre se richiedono alimentazione superiore (camere ccd raffreddate, montatura, etc) dovremo prevedere di aggiungere un altro sistema di alimentazione.
  • Varius: basta collegare il cavo fornito ad una batteria da auto con un Amperaggio adeguato (consiglio minimo 50Ah per una nottata fredda di astrofotografia) e collegare tutti i device al Varius, che li alimenterà oltre a collegarli al nostro PC/Tablet.

 

Porte USB e collegamenti

Come facciamo invece per le porte usb? E magari tenere il tablet collegato al power bank contemporaneamente? C’è un piccolo trucco. Dobbiamo comprare, per pochi euro un cavo OTG a Y, come questo: https://www.amazon.it/gp/product/B00M1H5348/ref=oh_aui_detailpage_o01_s00?ie=UTF8&psc=1 (io ho esattamente questo modello).

Agganciato alla presa micro usb del tablet, permette di collegare delle periferiche e di alimentare sia queste che il tablet. Il cavo funziona solo se alimentato da una fonte esterna: dal tablet non esce corrente come nei normali cavi OTG (ma vi può entrare). La fonte esterna sarà il nostro power bank. All’unica porta USB di questo cavo possiamo collegare un piccolo hub a 4 o 6 porte e il gioco è fatto. L’hub riceve infatti l’alimentazione dal power bank, che alimenterà tutte le periferiche che ci collegheremo, compresa una camera di guida e potremo quindi usare la nostra configurazione come se fosse un normale computer. Il consiglio è quello di acquistare anche mouse e tastiera wireless: per circa 20 euro avremo un piccolo ricevitore da collegare a una delle porte USB, che ci permetterà di usare mouse e tastiera al posto del touch, che è pure piuttosto impreciso (per 40 euro non si può pretendere di più). L’uso di mouse e tastiera wireless, oltre a eliminare due cavi, consente di occupare solo una delle porte usb del nostro hub e quindi di avere a disposizione una maggiore potenza di fuoco per collegarci quello che vogliamo.

A questo punto il nostro setup è pronto: il tablet funziona esattamente come un normale computer, quindi non c’è molto altro da aggiungere. Possiamo collegare le periferiche che vogliamo e installare driver e programmi, scaricandoli da internet o, meglio, importandoli da una chiavetta USB (così teniamo il tablet sempre scollegato dalla rete per impedire installazione di aggiornamenti e/o rallentamenti vari: non vorremo mica che si blocchi installando degli aggiornamenti durante la serata con il cielo migliore della nostra vita, vero!?). Tenete conto che se collegate device che richiedono ulteriore alimentazione rispetto a quella fornita dalle porte USB, dovrete collegarci una fonte di alimentazione supplementare.

Ecco la configurazione con porte USB e alimentata da un power bank da 26 Ampere pronta per la serata di fotografia astronomica. Autonomia stimata: 40 ore

Ecco la configurazione con porte USB e alimentata da un power bank da 26 Ampere pronta per la serata di fotografia astronomica. Autonomia stimata: 40 ore

 

Risultati

Ho provato il WinPad W700 con diverse configurazioni e sottoponendolo anche a qualche stress. Ho installato senza problemi i driver delle camere CCD che utilizzo, una ST-7XME e un ST-2000XCM della SBIG e quelli di una camera planetaria che ho utilizzato come autoguida attraverso PHD. Ho fatto girare la versione 5 di MaxIm DL, che gestisce sia la fase di ripresa che di autoguida, senza particolari problemi, oltre a PHD. Anche i driver ascom funzionano, così come programmi quali Cartes du Ciel. Non ho provato Stellarium perché è troppo pesante e in generale non consiglio di installarci software per il fotoritocco come Photoshop e PixInsight: questo tablet infatti va bene solo per gestire l’autoguida e al limite la fase di ripresa, mentre Eagle permette di eseguire qualsiasi tipo di operazione, essendo un computer vero e proprio.

Non ho provato a utilizzarlo per l’imaging planetario ma posso affermare senza problemi che NON è indicato, sia per la poca RAM che per l’esiguo spazio di archiviazione. In ogni caso consiglio di acquistare una micro SD da 32GB, che si trova a una decina di euro, per avere così spazio a sufficienza per accumulare molti dati durante le serate di ripresa del profondo cielo.

Uno screenshot direttamente dal Winpad W700 di MaxIm DL durante l'acquisizione e la guida sul finire di una serata di fotografica.

Uno screenshot direttamente dal Winpad W700 di MaxIm DL durante l’acquisizione e la guida sul finire di una serata di fotografica.

In commercio ci sono tablet più performanti, naturalmente, ma ho voluto testare la soluzione più economica per capire quali fossero le sue potenzialità. Per chi usa una reflex digitale rappresenta un’alternativa molto economica e migliore rispetto alle camere autoguida standalone (che devono essere alimentate comunque!) e gestire quindi la sola fase di guida. In generale anche per gli astrofotografi itineranti che desiderano togliere peso e cavi dalla loro macchina è una valida alternativa per gestire anche la fase di acquisizione. Ovviamente dovremo vedere dove e come appendere i vari cavi, power bank, tablet, dove posizionare la tastiera, etc.

A confronto:

  • Eagle: ovviamente è molto più performante di un economico tablet e consente di svolgere tutte le operazioni desiderate, oltre a fornire la flessibilità di utilizzo grazie al bridge di alimentazione integrato. Non ha problemi per eseguire qualsiasi software, così come per elaborare e acquisire filmati planetari con camere dotate anche di porta USB 3.0.
  • Tablet: ideale se abbiamo un setup molto leggero anche in termini di assorbimento della corrente, infatti le ccd raffreddate andrebbero comunque alimentate a parte, così come anche la montatura va alimentata a parte. In sostanza dovremo prevedere di alimentare ogni device in modo autonomo tranne quelli puramente USB. Questo porta a preferire il tablet se si riprende con una reflex non raffreddata, gestendo solamente l’autoguida e al massimo le riprese tramite un programma di terze parti.
  • Varius: può gestire tranquillamente, come alimentazione, montatura, camere raffreddate, fasce anticondensa. E’ stato pensato per le sessioni deepsky, mentre l’uso con camere planetarie sarà limitato dalla presenza di un hub usb 2.0 e dalla lunghezza del cavo derivante, oltre al limite fisico del la nostra macchina di ripresa. I software da eseguire dipendono dalla potenza del nostro PC/Tablet

 

Bonus: controllare il tablet in remoto

Queste poche righe in realtà sono generiche e consentono di visualizzare il desktop del computer/tablet che sta facendo le riprese da qualsiasi dispositivo, anche uno smartphone. Ci sono diversi metodi, ma il mio preferito è il seguente. Quello che serve è una rete locale che può essere creata con un piccolo router wifi da collegare a una presa USB (non serve internet!) e il programma VNC. Sul computer/tablet si installerà il software gratuito chiamato tight VNC, mentre sullo smartphone un’applicazione gratuita chiamata VNC Viewer. Si collegano entrambi i dispositivi alla rete locale, sul computer che controlla la sessione di ripresa si avvia Tight VNC e ci si annota l’indirizzo IP che gli è stato assegnato (Nella finestra di ricerca digitare cmd e premere invio; poi dal prompt dei comandi che si apre digitare Ipconfig, premere invio e leggere la voce IPv4 Adress); questo indirizzo deve essere immesso nell’applicazione VNC Viewer quando si deve configurare il computer a cui vorremmo connetterci. Il WinPad W700 si controlla in remoto che è un piacere e non ha mai mostrato rallentamenti.

A confronto:

  • Eagle: genera di automatico una rete WiFi e basterà connettersi con il device che vogliamo usare per controllarlo. Il tempo di latenza è inferiore rispetto al VNC, perchè usa un sistema differente.
  • Tablet: dobbiamo creare noi la nostra rete VNC, operazione consigliata a chi ha almeno un po’ di esperienza informatica. Sicuramente per i meno esperti si può usare TeamViewer come alternativa al VNC.
  • Varius: stesso discorso del Tablet, possiamo scegliere se affidarci ad un cavo sub 2.0 con lunghezza max 3mt circa, oppure creare anche qui una rete per il controllo in remoto.

 

Il Tablet è il Sacro Graal per la fotografia astronomica? Non proprio

La soluzione proposta qui comporta una spesa minima ma ha naturalmente delle limitazioni. Il tablet ha una risoluzione dello schermo di soli 1024X600 pixel e con appena 7 pollici di diagonale richiede una buona vista. L’hardware funziona e sembra stabile, ma nulla si sa sulla sua durata nel tempo. Il touch screen su uno schermo così piccolo non è comodo da usare, tanto che è indispensabile una tastiera e un mouse esterni. I collegamenti sono affidabili ma richiedono un minimo di manualità ed è necessario seguire le indicazioni per l’assemblaggio e l’ottimizzazione del setup proposte nel post. Insomma, si tratta di una soluzione che funziona certamente ma che non si può sostituire a oggetti di maggiore potenza, eleganza e affidabilità, come il sistema Eagle di PrimaLuceLab, che è molto più potente, versatile e pronto all’uso e ha materiali di ben altra fattura rispetto alla plastica e allo schermo minuscono di un tablet economico. La soluzione di Eagle, per chi fa della fotografia itinerante il suo stile di vita, possiede camere CCD con grossi sensori e magari vuole controllare focheggiatori elettrici, plate solving e in generale una complessa sessione di fotografia astronomica è sicuramente da preferire a un tablet dalla limitata potenza di calcolo e di memoria che non ce la farebbe proprio se si carica oltre la gestione della guida e della semplice acquisizione delle immagini.

E’ anche vero che il Varius della Geoptik è una buona soluzione per avere tutti i nostri device alimentati, collegati e con solo 1 cavo che va verso il nostro PC/Tablet.

D’altra parte si tratta di due soluzioni molto diverse; sarebbe come confrontare una vecchia reflex Canon 350D che si trova usata a meno di 200 euro con una nuovissima full frame Canon 7D Mark II: entrambe sono in grado di produrre dei risultati, ma la 7D possiede una potenza inarrivabile per la vetusta 350D e con la seria possibilità che questa potrà durare per ben più a lungo della configurazione più economica. Il Varius si colloca a metà tra i 2, come prezzo, funzionalità e possibilità.

A confronto:

  • Eagle: in un unico oggetto racchiude un vero e proprio pc, un bridge di alimentazione per tutti i nostri device e la possibilità di montarlo sul nostro setup, senza poi smontarlo ad ogni utilizzo. E’ in grado di fare tutto, dal deepsky alle riprese planetarie, specie nella versione Observatory. Inoltre è tutto integrato a livello software.
  • Tablet: ha dalla sua l’economicità e la compattezza, ideale per operazioni di base come autoguida e gestire l’acquisizione, ma per alimentare i nostri device (tranne quelli USB) dobbiamo pensare ad altre fonti di alimentazione. Va bene per gestire sessioni “semplici” sul deepsky, mentre per le riprese planetarie il framerate della camera si abbasserà moltissimo per via dell’hardware economico.
  • Varius: essendo solamente un bridge di alimentazione con hub usb 2.0 integrato, richiede sempre e comunque di essere collegato al nostro PC/Tablet. Offre molte possibilità di alimentazione, in pratica può alimentare qualsiasi cosa vogliamo connetterci. Rispetto al tablet, se ci colleghiamo un PC performante, possiamo eseguire tutte le operazioni che vogliamo, con limitazioni per l’uso con camere planetarie in fase di acquisizione. Si può montare e rimuovere dal nostro setup con la basetta fornita di serie.

 

 

Testiamo la linearità del nostro sensore digitale

Uno dei grandi vantaggi dei sensori digitali è la cosiddetta linearità, o risposta lineare. Di cosa si tratta? In pratica un sensore produce un’immagine la cui intensità è direttamente proporzionale alla luminosità dell’oggetto o al tempo di esposizione. Se ad esempio facciamo una foto di una stella non variabile, questo implica che se si raddoppia l’esposizione raddoppierà il segnale (la luminosità) che il sensore avrà registrato dalla stella. Detto in questi termini sembra la scoperta dell’acqua calda e si fatica persino a capirne l’utilità; anzi, gli astrofotografi più esperti neanche lo vedono come un vantaggio e vedremo presto il perché.

Che i sensori abbiano una risposta lineare all’intensità luminosa che li colpisce non è una cosa scontata. L’altro strumento che usiamo per osservare il mondo, l’occhio, NON possiede una risposta di questo tipo, ma logaritmica: in pratica l’intensità percepita da tutti gli occhi umani cresce con il logaritmo dell’intensità luminosa che lo colpisce. In questo modo, quindi, quando vediamo una sorgente che ci appare il doppio più luminosa di un’altra, la reale differenza di luminosità non è di due volte ma molto più alta. Il caso classico è rappresentato dalla scala delle magnitudini, in cui tra una stella di magnitudine 2 e una di magnitudine 4 non c’è una differenza di 2 volte come suggerisce l’occhio ma di ben oltre 6 volte. Questa curva di risposta meno ripida di una retta consente al nostro occhio di sopportare enormi differenze di luminosità senza avere particolari problemi perché di fatto schiaccia le reali differenze di luminosità e ce le fa percepire come se fossero molto più ridotte di quanto siano. Di fatto, per chi conosce un po’ il gergo della fotografia astronomica, l’occhio umano opera uno stretch logaritmico automatico su ogni immagine che registra.

Perché allora i sensori digitali possiedono una risposta lineare, così differente da quella dell’occhio umano? E perché questa sembra così importante tanto da dedicarle un post? La risposta è semplice: la linearità nella risposta è fondamentale se si vogliono effettuare precise stime di luminosità degli astri. L’introduzione dei sensori digitali nell’astronomia (professionale) ha prodotto una grande rivoluzione che ha consentito di arrivare persino a scoprire la debolissima traccia lasciata da un pianeta extrasolare in transito di fronte al disco luminoso della propria stella.

In ambito prettamente astrofotografico questo che è un enorme vantaggio viene ribaltato e si trasforma in uno svantaggio: gran parte dell’elaborazione di una foto estetica si basa infatti sui cosiddetti stretch, ovvero sull’alterare la risposta portandola da lineare a logaritmica. Questa operazione consente di osservare sullo schermo del computer sia dettagli molto deboli che molto brillanti. Se si fosse avuto un sensore già con una risposta logaritmica come il nostro occhio sarebbe stato quindi più facile ottenere fotografie estetiche, in un certo senso!

In realtà la risposta lineare del sensore serve anche per chi fa fotografia estetica e permette di correggere i principali difetti delle immagini attraverso i dark frame e i flat field. Quest’ultimi sono importantissimi nel poter disporre di un’immagine da elaborare priva di difetti macroscopici e dalla quale potremo discernere molto bene dettagli reali da artefatti dovuti a polvere sul sensore o alla vignettatura del telescopio. Se il sensore non ha risposta lineare per certi livelli di luminosità, i flat field potrebbero non correggere le immagini e il risultato potrebbe essere disastroso.

Chi si dedica alla ricerca, anche in ambito amatoriale, soprattutto fotometrica, ha l’assoluta necessità di sapere se e quanto è lineare la risposta del proprio sensore, altrimenti rischia di misurare magnitudini del tutto sballate rispetto ai dati reali. Ecco allora che ho trasformato un argomento che poco interessava in uno dei mille problemi aggiuntivi che si trovano ad affrontare tutti coloro che usano camere digitali: i sensori hanno una risposta lineare? Se sì, per tutto l’intervallo di luminosità consentito? Come possiamo capire come si comporta il nostro sensore?

Come al solito parto con le notizie brutte: non è scontato che la risposta del sensore sia lineare su tutto l’intervallo di luminosità che riesce a darci, anzi, i sensori delle reflex e in generale tutti quelli dotati di un meccanismo chiamato porta antiblooming (ABG) hanno un ristretto intervallo di linearità. Questo si traduce nell’impossibilità di fare misure fotometriche e spesso anche nella difficoltà quasi estrema di ottenere flat field che correggano bene le immagini estetiche. Quindi, se avete fatto del flat field e avete notato che “non flattano” la risposta potrebbe essere questa: non li avete fatti nell’intervallo di linearità del sensore, che potrebbe essere molto limitato.

La prossima domanda allora è scontata: come misuro l’intervallo di linearità del sensore? Come faccio a capire quando smette di comportarsi bene e inizia a fornire valori sballati di luminosità?

È qui che arriva la bella notizia, perché possiamo fare un test rapido e molto semplice, di giorno e stando comodi dentro casa. Di modi per fare questo test ce ne sono diversi, qui spiego quello più facile, rapido e chiaro. L’idea alla base è chiara: disporre di una fonte di luce fissa e fare una serie di scatti con tempo crescente, in modo da coprire tutta (o quasi) la gamma di luminosità concessa dall’elettronica del sensore. Poi misureremo la luminosità della sorgente in funzione del tempo di esposizione e costruiremo un bel grafico. Se la risposta è lineare, i punti si disporranno su una retta, altrimenti inizieranno a fare strane curve e potremo così individuare l’intervallo di luminosità in cui potremo effettuare i nostri flat field o misurare la luminosità delle stelle senza problemi.

Ora che abbiamo capito l’idea alla base, cerchiamo di metterla in pratica. Intanto la fonte di luce: ideale è una lampada a led, anche una torcia. Se abbiamo una flatbox le cose saranno ancora più semplici. Non è necessario montare la camera su un telescopio ma è sicuramente più comodo. Se non abbiamo grossi problemi, possiamo montare il telescopio in casa e metterci sopra la flat box. L’idea è quella di ottenere dei flat field con diversi tempi di esposizione, idealmente da 1 a 20-30 o più secondi, in modo che la luminosità media dell’esposizione più breve sia attorno a 1000-1500 ADU e quella dell’esposizione più lunga raggiunga la saturazione, circa a 65000 ADU se usiamo camere da 16 bit. In questi casi visualizzare l’istogramma ci sarà molto utile. Se la luminosità della flatbox è troppo forte possiamo inserire un filtro nella nostra fotocamera (tanto la linearità non dipende dalla lunghezza d’onda) o schermare la luce della flatbox con qualche foglio bianco.

A questo punto, in binning 1 (cioè a piena risoluzione) e con il sensore raffreddato (per chi se lo può permettere) effettuiamo degli scatti a esposizioni crescenti, partendo da 1 secondo fino ad arrivare alla saturazione, incrementando di un secondo ogni volta. Ripetiamo questa procedura 3 volte per avere una buona statistica (in pratica alla fine costruiremo 3 grafici indipendenti e vedremo i risultati) che ci permetterà di escludere eventuali variazioni della sorgente di luce. In alternativa possiamo mediare 5-6 singoli scatti per ogni intervallo di esposizione (ognuno dei quali calibrato con dark o con bias), come ho fatto nei risultati che troverete alla fine di questo post. Se abbiamo tempo e un CCD raffreddato, sarebbe meglio catturare circa 3-5 dark frame per ogni esposizione. Naturalmente non servono flat field perché stiamo analizzando di fatto dei flat field. Se abbiamo sensori non raffreddati non facciamo i dark ma i bias: una ventina di scatti con camera al buio e il più breve tempo di posa concesso dall’elettronica.

In fase di elaborazione non dovremo far nulla se non calibrare le nostre esposizioni. Attenzione in questo punto: i bias frame vanno bene per tutti gli scatti, mentre i dark frame sono collegati a ogni esposizione, quindi NON usiamo dark da 5 secondi per correggere le immagini da 2 secondi. So che alcuni software applicano un dark frame adattivo, ma non dobbiamo neanche pensarci!

Con le immagini calibrate adesso passiamo alla fase più noiosa: dobbiamo scegliere un’area di circa 50X50 pixel, sempre la stessa per ogni scatto e illuminata in modo circa uniforme, e annotarci il valore medio di luminosità, espresso in ADU.

In alternativa, se non ci sono forti variazioni di luminosità nell’intero campo, potremo usare tutta l’immagine come area di misurazione. Questo ci evita di dover tracciare un riquadro su ogni esposizione ma la precisione ne risentirà. Se i nostri speciali flat field possiedono variazioni di luminosità superiori al 10% nelle varie zone dell’immagine, siamo costretti a scegliere una piccola area verso il centro e con un’illuminazione più uniforme. La richiesta di luminosità uniforme lungo l’area di cui vogliamo misurare l’intensità luminosa è fondamentale per evitare che la misura venga falsata da porzioni che si trovano già oltre il range di linearità rispetto ad altre.

I programmi per fare questa misura sono quelli tipicamente astronomici, come AstroArt e MaxIm DL. Con MaxIm DL basta aprire l’immagine calibrata che si vuole misurare, visualizzare la finestra “Information Window” (View –> Information Window), e poi da questa scegliere la modalità “Area”. Di default compariranno le informazioni relative a tutta l’immagine, compresa quella che a noi maggiormente interessa: il valore medio della luminosità (Average), espresso in ADU. Se vogliamo o dobbiamo restringere l’area di misurazione, si deve tracciare un rettangolo sull’immagine con il mouse, ciccando con il tasto sinistro, tenendo premuto e trascinando il rettangolo che si formerà. In questo caso è assolutamente necessario annotarsi la posizione e le dimensioni della finestra di misurazione perché dovrà essere identica per ogni immagine che vorremo misurare, nella medesima posizione. Una volta tracciata l’area, la finestra “Information Window” ci darà le sue coordinate (quindi potremo ridisegnarla uguale senza problemi anche sulle altre esposizioni) e naturalmente i valori di luminosità media.

Area di misurazione della luminosità media con MaxIm DL e rispettiva "Information Window".

Area di misurazione della luminosità media con MaxIm DL e rispettiva “Information Window” in cui possiamo trovare la sua posizione e la luminosità media (Average).

 

Analizziamo le immagini

Bene, per ognuna delle immagini calibrate con dark frame o bias frame annotiamoci il relativo tempo di esposizione e il valore medio di luminosità. Importiamo i dati in un foglio di calcolo e cominciamo con le nostre analisi.

Come programma possiamo usare Excel o il gratuito Gnumeric, che funziona sia per Windows che per Linux. In ogni caso le operazioni da fare sono poche e semplici: si tratta infatti di costruire qualche grafico e magari fare una regressione lineare sui dati. Niente paura, spiego tutto nei prossimi punti.

  • Il primo grafico che dobbiamo fare mette in correlazione il tempo di esposizione e il valore medio di ADU misurato per ogni immagine. Sull’asse x va quindi il tempo di esposizione dei nostri speciali flat field, sull’asse y i valori medi di ADU. Da questo grafico, se abbiamo fatto tutte le misure per bene, dovremo trovare dei punti che si dispongono su una retta perfetta: caspita, il sensore è perfettamente lineare allora! No, non necessariamente. Questo è il primo grafico e serve per vedere se ci sono stati errori macroscopici nella fase di acquisizione ed estrapolazione dei dati (o se il sensore fa proprio schifo!). Con il grande intervallo di luminosità sull’asse y è impossibile vedere piccole deviazioni dal comportamento lineare. Quando la situazione può ingannare l’occhio (cioè quasi sempre), ecco che subentra una cosa che gli uomini hanno inventato tanto tempo fa e che i più, ahimé, disprezzano: si chiama scienza, in questo caso un po’ di statistica. La domanda a cui vogliamo rispondere è la seguente: il grafico ci sembra perfetto perché è così o perché siano stati ingannati? La risposta l’ho già data implicitamente qualche riga sopra, meglio quindi procedere spediti per vedere che avevo ragione;
Di primo acchitto il grafico sembra molto bello, ma l'occhio inganna...

Di primo acchitto il grafico sembra molto bello, ma l’occhio inganna…

 

  • A dominare il grafico non sono le probabili piccole deviazioni dal comportamento lineare ma il fatto che la luminosità cambia di migliaia di ADU lungo l’asse Y. Per togliere questo comportamento e mettere a nudo le più piccole imperfezioni del nostro sensore, dobbiamo fare quella che viene chiamata regressione lineare o fit lineare e analizzare i residui. In pratica diciamo al software di “unire” i punti con la migliore retta che è possibile costruire, poi sottrarremo i valori della retta ai punti reali e analizzeremo quelli che vengono chiamati residui, ovvero i punti depurati dell’andamento principale che ci impediva di vedere nel dettaglio il loro comportamento. Se i punti sono davvero tutti sulla retta come sembra dal primo grafico, i loro residui saranno tutti nulli o disposti in modo casuale attorno allo zero, e noi saremo contentissimi perché avremo in tasca il sensore digitale più preciso dell’Universo intero. Tranquilli, non c’è pericolo di cadere in questa eventualità…
    Sembra tutto complicato ma non lo è. Ci sono diversi modi per fare un fit lineare e poi sottrarne i valori ai dati. Con il programma Gnumeric, ad esempio, un modo molto rapido e user friendly è farlo fare in modo grafico al programma. Nelle opzioni di costruzione del grafico (che si attivano quando vogliamo costruire un nuovo grafico o quando facciamo doppio click su uno già creato), se ci posizioniamo sulla serie di dati immessi e clicchiamo sul punsalte “Aggiungi” potremo scegliere una bella “Trend line to serie 1”, in particolare del tipo “Lineare”. Nel nuovo menù che si apre basta accertarsi che l’opzione “Affine” sia selezionata e già potremo vedere una bella retta sovrapposta ai nostri dati.
In gnumeric, in pratica un clone gratis di Excel, possiamo fare tutti i calcoli che vogliamo. In questo caso ci serve un fit lineare e poi magari di visualizzare l'equazione della retta.

In gnumeric, in pratica un clone gratis di Excel, possiamo fare tutti i calcoli che vogliamo. In questo caso ci serve un fit lineare e poi magari di visualizzare l’equazione della retta.

 

  • Non abbiamo ancora finito, però. Clicchiamo ancora su “Aggiungi” e selezioniamo “Equazione to Regressione lineare 1”. Confermiamo tutto e vedremo comparire nel grafico sia la retta di fitting che l’equazione che la descrive. A questo punto dobbiamo creare una nuova colonna nel nostro foglio di lavoro, alla quale applichiamo l’equazione a ogni tempo di esposizione. In questo modo invece di una retta troveremo dei punti che si sovrappongono a essa in modo perfetto. Non c’è bisogno di graficarli; questi ci servono per fare la successiva operazione: creare i residui. I punti appena ottenuti sono quelli che si avrebbero in una situazione ideale in cui la risposta è rappresentata da un’unica e perfetta retta. I nostri punti sperimentali, invece, non avranno questa bella proprietà. Per capire quanto se ne discostano basta creare una nuova colonna in cui calcoliamo la differenza Osservato – Calcolato per ogni tempo di esposizione.

dati_better

  • Proviamo ora a costruire un grafico di questi residui in funzione del tempo di esposizione o, meglio, del valore medio di ADU corrispondente e vedremo che quella che prima era una retta perfetta ora in realtà è molto diversa.
Ora le cose sono più chiare e i dati non sono poi così ben disposti su una retta, che in questo caso dovrebbe essere parallela all'asse x!

Ora le cose sono più chiare e i dati non sono poi così ben disposti su una retta, che in questo caso dovrebbe essere parallela all’asse x!

 

Questo è il grafico davvero importante, perché ci dice come cambia il comportamento del nostro sensore in funzione della luminosità. Nella migliore delle ipotesi vedremo un intervallo lungo fino ad almeno 30 mila ADU in cui i punti si trovano su una retta quasi perfetta e poi divergono. Questo è il caso classico delle camere CCD scientifiche, tipicamente monocromatiche e prive della porta antiblooming.

Nella peggiore delle ipotesi, ovvero nel caso di camere CCD o reflex dedicate all’imaging estetico, le cose saranno ben peggiori, con diversi andamenti di “linearità” prima della saturazione. In questi casi diventa impossibile fare fotometria di alta precisione e spesso è complicato anche fare corretti flat field per riprese con soggetti deboli.

 

Due esempi reali

Ho effettuato il test di linearità appena esposto per due sensori CCD. Il primo, un Kak-402 con microlenti che equipaggia una SBIG ST-7XME, è il tipico sensore scientifico: monocromatico e senza antiblooming. Il secondo, un Kaf-8300 che equipaggia molte camere CCD, in questo caso una Moravian G2-8300 monocromatica, dotato di porta antiblooming, quindi più adatto all’imaging estetico.

I risultati evidenziano molte differenze. Se a prima vista i grafici della luminosità media in funzione del tempo di esposizione sono identici, o addirittura sembrano migliori nella Moravian (ma solo perché non si è raggiunta la saturazione, cosa che è avvenuta con la SBIG):

 

Test di linearità per due sensori CCD. Questi i grafici degli ADU medi in funzione del tempo di esposizione. Ci dicono poco e potrebbero ingannare.

Test di linearità per due sensori CCD. Questi i grafici degli ADU medi in funzione del tempo di esposizione. Ci dicono poco e potrebbero ingannare.

 

 Il fitting lineare con conseguente analisi dei residui rivela la reale situazione:

 Analisi dei residui: ora è fin troppo evidente quale sia il sensore migliore quanto a risposta lineare. Il Kaf 8300 presenta delle vere e proprie montagne russe!

Analisi dei residui: ora è fin troppo evidente quale sia il sensore migliore quanto a risposta lineare. Il Kaf 8300 presenta delle vere e proprie montagne russe!

 

Come si può vedere, la SBIG, a partire da circa 2000 ADU e fino a 25000 presenta una linearità che sfiora la perfezione, con un comportamento da manuale. Gli scostamenti dalla retta ideale sono dell’ordine dello 0,01%, ovvero di una parte su 10 mila. Questo consente ad esempio di mettere in evidenza senza problemi differenze di magnitudine dell’ordine del millesimo e rivelare quindi anche pianeti extrasolari in transito. Oltre i 30 mila ADU il comportamento comincia lentamente a divergere dalla linearità, sebbene bisogna superare i 40 mila per avere una non linearità dell’ordine dell’1%.

D’altra parte il grafico dei residui del Kaf-8300 è molto meno regolare. Si possono vedere almeno tre zone indipendenti, ognuna approssimabile con una retta di diverso coefficiente angolare: la prima fino a 9 mila ADU, la seconda da 10 mila a circa 18 mila e la terza da 20 mila a 30 mila, prima della naturale deviazione asintotica verso i valori di saturazione.  Questo è un problema se si vuole fare fotometria di alta precisione, in pratica impossibile, ma anche per i flat field. Quale valore usare per fare corretti flat field? La risposta forse già l’abbiamo vista da qualche altra parte, ma ora ne abbiamo la prova: per correggere un fondo cielo che tipicamente ha valori di poche migliaia di ADU, occorre che il flat field sia fatto nel primo intervallo di linearità, ovvero quello fino a 9000 ADU. In pratica, un buon flat field per un sensore di questo tipo è la media di tanti singoli flat che hanno come luminosità di picco circa 8000, massimo 9000 ADU. Per la ST-7XME invece, e in generale per tutte le camere sprovviste di porta antiblooming, i flat field si possono fare attorno a 25 mila ADU, in modo da avere il maggior rapporto segnale/rumore pur rimanendo ancora entro la zona perfettamente lineare.

 

Il test può essere fatto anche con le reflex senza problemi: basta scattare in formato raw agli ISO che di solito si usano per fare riprese astronomiche. In questo caso sarebbe interessante capire se e quanto varia la linearità della risposta in funzione degli ISO e in generale come si comportano questi sensori. Basta provare!