Ancora sulla spettroscopia di base

Lo abbiamo visto insieme qualche tempo fa: la spettroscopia sta iniziando a diventare una attività molto apprezzata dagli astrofili!

Certamente questo è dovuto alla maggior disponibilità di strumenti di qualità a un prezzo abbordabile (camere CCD mono di buona fascia e filtri per spettroscopia, come gli Star Analyzer) ma anche al crescente interesse degli astrofili verso il sottile, ma netto, confine che divide ricerca scientifica (magari anche solo amatoriale) dalle osservazioni astronomiche fotovisuali tradizionali.

A mio parere questo cambiamento nasce da una sommatoria di fattori.

In parte, come appena visto, si tratta di precondizioni tecnico-strumentali, commerciali se si vuole, ma non credo che questo esaurisca il tutto….

A pesare, infatti, iniziano ad essere anche profili ulteriori, quali certamente quelli ambientali! La presenza di un IL sempre più invasivo sui cieli della nostra bella penisola, infatti, sta facendo emergere la necessità di ricercare qualcosa di più compatibile con l’astronomia dalla città, rispetto al tradizionale deepsky a colori. Un buon deepsky full-range richiede davvero cieli da paura, per essere fatto al meglio; e cieli come quelli, oramai, stanno diventando una rarità, non solo in Italia, ma un po’ in tutta Europa! Dimostrazione, in tal senso, di una ricerca da parte degli astrofili di qualcosa di differente e di più city-friendly, la si ha semplicemente guardando l’esplosione dell’imaging narrow band, avvenuta negli ultimi anni. Grazie a questa tecnica, è possibile da tempo ottenere grandi immagini anche sotto cieli pesantemente inquinati. E a costi, tutto sommato, ragionevoli…

Ma anche qui, qualcosa ancora pare sfuggire, a mio avviso. In parte, credo, a condurre verso delle scelte astronomiche un po’…border-line…è anche un fattore sociale e culturale. Mi spiego meglio: negli ultimi anni, proprio la grandissima diffusione dei CCD di qualità e dei filtri interferenziali a banda stretta ha permesso di effettuare riprese deepsky davvero pazzesche; del resto anche i software di elaborazione e acquisizione, sempre più potenti e accurati, se ben usati, permettono di ottenere con piccoli diametri immagini un tempo del tutto impensabili!!! Queste immagini, naturalmente, ottengono il giusto e meritato risalto sul web, correndo in punta di social network, e in una frazione di secondo, da un capo all’altro del mondo. Ecco, forse il nodo gordiano è proprio questo. Che è bello confrontarsi e misurarsi con gli altri, condividere e valutare i limiti delle proprie capacità, cercando di migliorarsi e di imparare sempre da chi ne sa di più; ma questo incredibile proliferare di immagini strepitose su internet, con risultati qualitativamente a volte davvero inavvicinabili per l’astrofilo comune, forse da un lato un po’ intimorisce, e fa sorgere il desiderio di praticare una astronomia un po’ più a passi lenti. Un po’ la versione astronomica dello slow-food, se vogliamo. Potremmo chiamarle osservazioni slow-sky…

Sia ben chiaro, di foto ne abbiamo fatte tantissime tutti, e siamo tutti fieri dei piccoli, medi e grandi risultati ottenuti: ma forse questi segnali di interesse verso il mondo dell’astronomia scientifica meritano di essere valorizzati più di altri. Proprio perché una foto può far moltissimo clamore, ma il picco di una riga di emissione….quello no….. E a mio personale avviso, quei pochi dati, salvati in un angolino del nostro stipatissimo hard disk, hanno un bellezza senza clamore. Ma eterna! Che perdurerà a dispetto delle innovazioni tecniche e tecnologiche che sicuramente il prossimo futuro ancora ci riserverà.

In conclusione, scrivo tutto questo per presentarvi quest’oggi un interessantissimo contributo, nel campo degli spettri, dell’amico Massimo Di Lazzaro, che ci illustra passi compiuti e i risultati ottenuti. Con la convinzione che questa sua esperienza da neofita, in crescita, della spettrofilia, unita ad altri contributi già pubblicati e ad altri ancora che verranno, possa permettere a tutti di assaggiare un pochino le sensazioni e le emozioni che questo peculiare modo di approcciarsi al cielo veicola.

E magari, chissà, faccia sorgere anche in qualcuno il desiderio di provare e di cimentarsi.

Buona lettura.

LUCA ZANCHETTA – TELESKOP SERVICE ITALIA


Spettroscopia amatoriale….una nuova avventura

Qualche mese fa ho cominciato ad interessarmi di spettroscopia, un mondo interessante, complesso forse, ma pieno di belle sorprese! Chi si sarebbe mai aspettato che da una semplice serie di riprese avrei potuto scoprire cosa si nasconde dentro a quel raggio di luce remoto, capire come è fatta e come si comporta una stella!!!

La curiosità si è accesa osservando qualcosa di semplice, bellissimo ma quasi banale, come un arcobaleno; mi sono sorpreso ad interrogarmi in dettaglio sulla esatta modalità con la quale si formano i colori, sulla natura di ciò che vediamo realmente, sul perché!

Avevo quindi bisogno di documentarmi, leggere un po’ di testi di fisica, apprendere il più possibile: in rete ho trovato moltissime informazioni, ed ho potuto studiare un po’ di astrofisica (l’ABC intendiamoci…) e iniziare da lì a capire che tipo di strumentazione mi sarebbe servita con esattezza! Un contributo essenziale mi è stato dato proprio qui, da TS Italia: mi hanno seguito e consigliato su tutto, dal telescopio più adatto allo scopo ed alle mie esigenze (un RC8”: uno strumento eccezionale, versatile e soprattutto pressoché privo di aberrazioni), compresa montatura (Neq6 Pro), camera CCD (QHY5LIII-178 monocromatica)…

Ecco qui a dire il vero è stato il difficile. Ho avuto diverse perplessità, perché non è così semplice, a livello pratico, capire da subito e in un ambito così particolare, quale è la camera più adatta! Anche in considerazione di un budget che non poteva essere illimitato…Nella fotografia tradizionale scegliere è abbastanza più semplice devo ammettere (sempre budget permettendo); ma qui l’esigenza era di una camera con dei requisiti davvero particolari. Ebbene, nella nuova QHY li ho trovati! Non è qui il caso di stare a descriverli nel dettaglio, per quelli basta andare sul sito di TS Italia e si trovano tutti… Però anche qui della scelta finale sono soddisfatto!

Poi, la vera grande scelta: spettroscopio o Star Analyzer 100? La scelta è stata facile: SA100! Un reticolo di diffrazione semplice da usare, che si avvita direttamente sulla camera e in grado di restituire da subito lo spettro della stella che si sta riprendendo. Certo, è a bassa risoluzione, quindi alcune cose sono precluse, ma per iniziare è davvero il massimo!!! Anche perché gli oggetti da poter riprendere sono ugualmente moltissimi.

Poi il software: anche qui la scelta è stata dettata dalla facilità di utilizzo, in primis, ed ho scelto quindi R-Spec. Devo davvero spendere due parole su questo software: è molto completo e di facile utilizzo, grazie anche ai numerosi tutorial inseriti già nella barra degli strumenti; fantastico! Permette di salvare i profili all’interno del software, in apposite cartelle, così da essere sempre pronti quando si vuole ritrovarli, senza andare a spulciare manualmente nel PC. E sei hai bisogno di assistenza il progettista del software è sempre a disposizione! Ogni tanto gli scrivo, siamo rimasti in contatto, anche se ha sede in America, e sono davvero soddisfatto anche di questa scelta.

Ora non rimane che “andare a caccia di spettri” ed appena il tempo lo permette ne approfitto per recarmi al sito astronomico della mia associazione: il Gruppo Astrofili Galileo Galilei di Tarquinia per fare le prime acquisizioni spettroscopiche. Qui giunti, non resta che preparare il setup e riprendere; dopo aver ultimato la preparazione di tutto, ho cominciato con lo spettro di Sirio. L’alta risoluzione della QHY in questo mi ha aiutato tantissimo, e mi ha permesso di avere degli spettri di ottima qualità. Ho effettuato le riprese in formato video, per poi estrarre dal filmato i singoli frame più utili, e passare quindi ad analizzare ed elaborare il profilo della stella:

a

b

Quello si va qui ad analizzare, è l’idrogeno nelle sue varie lunghezze d’onda, che è ovviamente l’elemento principale di una stella. All’inizio è stato piuttosto complicato comprendere con esattezza come elaborare lo spettro poiché i tutorial, anche se molto intuitivi, erano comunque tutti in un inglese piuttosto tecnico! Con l’aiuto di alcuni amici, però, alla fine ce l’abbiamo fatta e la soddisfazione è stata davvero tanta! Sirio è la stella scelta per la calibrazione dello spettro di Betelgeuse, una supergigante rossa, cui ho dedicato molto più tempo: nuovamente, sono stato soddisfatto dei risultati ottenuti! Nelle due immagini a seguire, vediamo lo spettro calibrato in lunghezza d’onda e poi il profilo finale.

c

d

Ho preso sempre più confidenza con il software e dopo aver passato in rassegna le due stelle più belle dell’inverno sono passato a quelle estive: cominciamo quindi con Vega, bellissima stella nella costellazione della Lira. Anche qui spettro calibrato in lunghezza d’onda e profilo finale.

e

f

Tutte queste sono ovviamente stelle piuttosto facili da analizzare: Sirio e Vega sono di classe spettrale A e Betelgeuse è di classe spettrale M. Sono quindi stelle alla portata di tutti!

Non appena avrò maturato abbastanza esperienza, passerò certamente ad altri e più impegnativi obiettivi, come le stelle Wolf-Rayet e le supernove…

Per me il viaggio è appena incominciato: ho in programma numerosi spettri da riprendere ed elaborare, e spero di poterveli mostrare il prima possibile.
A presto
Massimo Di Lazzaro

 

Appunti di spettroscopia, qualche risultato

Negli ultimi tempi i contributi su questo blog sono fioccati, con risultati davvero notevoli ed articoli di assoluto rilievo! Dai contributi del nostro eccellente Daniele Gasparri a quelli di profilo scientifico di Albino Carbognani: non ci siamo davvero fatti mancare nulla. O quasi….

In effetti, ci abbiamo pensato un po’ su, ma tra la grande divulgazione tecnica e i profili scientifici più alti qualcosina, ancora, mancava… Mancava il contributo di astrofili comuni, astrofili come noi, magari molto specializzati! Contributi di profilo tecnico, con un taglio operativo, ma sempre con uno sguardo, una strizzata d’occhio, al mondo scientifico. Ad avviso di chi scrive, interventi come quello che vi sto introducendo, dovrebbero rappresentare, specie in tempi in cui è molto ampia la possibilità di accesso e di condivisione paritaria delle informazioni, un vero riferimento per tutti gli astrofili, e forse indicare quello che si potrebbe considerare come il solo, vero obiettivo tecnico finale, per una ampia parte degli astrofili amatoriali: fornire un proprio, personale, preziosissimo ed apprezzatissimo contributo alla ricerca scientifica! Naturalmente, ciò non può che riguardare soprattutto e in particolare gli astrofili con un po’ più esperienza alle spalle, ma senza escludere mai nessuno.

Certo, i contributi di profilo scientifico vengono spesso forniti in silenzio, senza clamori, senza luci della ribalta, e forse anche per ciò finiscono con l’essere interesse solo di pochi. Non fanno sgranare gli occhi ai bambini, alla vista di tutti quei colori. E non sono comprensibili direttamente ad una vasta platea di uditori generalisti. Ma sono proprio questi contributi a rendere il maggior servizio alla scienza e a far progredire DAVVERO il sapere umano!

Passo quindi a presentarvi, quest’oggi, il contributo di un grande astrofilo, oltre che di un grande amico e di un vero e proprio vulcano di idee, risorse ed ingegno: Claudio Balcon. Nel ringraziarlo personalmente, e a titolo di TS Italia tutta, per aver dedicato parte del suo, pur già ridotto, tempo libero per redigere questo articolo, mi limito a concludere rimarcando il fatto che, qui, si ha a che fare con una passione vera e profonda, di quelle che ci mostrano come la grandezza, per un astrofilo, non si misuri col portafogli, ma soprattutto con l’orologio, oltre che con la testa e con il cuore!

Grazie Claudio!

Buona lettura.

 

LUCA ZANCHETTA – TELESKOP SERVICE ITALIA

 

 


0

Innanzitutto una piccola introduzione di storia della spettroscopia. A dispetto di quanto si potrebbe pensare, la spettroscopia ha avuto inizio molto molto tempo fa, fin dai tempi di Tolomeo, o addirittura prima: nonostante l’altissimo valore del contributo dato da Tolomeo, infatti, non si può scordare che egli condusse i propri studi riprendendo il lavoro effettuato già molto prima di lui da Ipparco, il quale classificò le stelle non solo per intensità ma anche per colore, in particolare distinguendole tra bianche e rosse.

Tuttavia lo scopo di questo articolo è molto più attuale e richiede, quindi, un salto temporale in avanti di almeno un paio di millenni! Nel mondo contemporaneo non ci sono di certo difficoltà ad avere accesso ad articoli, lezioni universitarie, trattati di varia natura in tutti i campi della scienza. C’è una cosa però che in nessun caso riusciremo a trovare preconfezionata in forma digitale, ovvero l’emozione! La scarica di adrenalina pura che ti investe quando sei proprio tu, di persona, quello che ha conseguito un risultato tecnico e scientifico che fino a prima ti sembrava impossibile; e che magari è anche una prima volta, in termini di risultato, dal punto di vista scientifico.

Quando guardiamo un oggetto scarsamente luminoso, il nostro occhio non riesce a percepirne i colori, in quanto attiva dei recettori a maggior sensibilità in grado di discernere solamente vari livelli di grigio. Se osserviamo la nebulosa di Orione con un binocolo o un piccolo telescopio, ad esempio, notiamo solamente un chiarore blu-verde, ben lontano dalle complesse dominanti cromatiche che emergono nelle immagini fotografiche più profonde che libri, riviste e internet ci offrono a pioggia; immagini che forse, in prima battuta, da neofiti, anche noi speravamo di vedere, immergendoci nel tripudio di una molteplicità di brillanti colori.

L’avvento della pellicola fotografica prima, e della camera CCD/CMOS poi, ci ha consentito, tuttavia, di arrivare laddove il nostro occhio non può assolutamente arrivare. I sensori elettronici a colori consentono di ottenere tre immagini nelle bande di colore rosso, verde e blu (RGB) che, una volta composte, riproducono la gamma cromatica tipica della nostra capacità visiva. I vantaggi di questi dispositivi sono molteplici: dalla possibilità di poter impostare tempi di esposizione enormemente superiori al tempo equivalente alla nostra capacità visiva, a quella di utilizzare una efficienza quantica fino a oltre 100 volte superiore a quella dell’occhio e persino a quella della pellicola fotografica. Fra i sensori a colori, tuttavia, non esiste di fatto uno standard rigoroso per quanto riguarda la curva di risposta delle bande RGB, ed è pertanto difficile confrontare misure fotometriche riprese con camere a colori diverse tra loro.

A differenza dei micro-filtri RGB integrati, nonché dei tradizionali kit RGB di filtri in cella ad uso ritrattistico, quelli fotometrici UBVRI sono normalizzati e consentono di ottenere misure calibrate secondo standard riconosciuti in ambito scientifico mondiale. Naturalmente la standardizzazione di questi filtri pone anche dei limiti: qualora volessimo, infatti, aumentare la risoluzione spettrale sarebbe necessario incrementare il numero di filtri con bande passanti più strette e contigue. Il vantaggio di questo sistema, anche se crea qualche lineamento di complessità in fase di ripresa, è quello di coprire tutta l’area geometrica del sensore, consentendo quindi di analizzare più soggetti contemporaneamente, ma in questo caso ciò va a scapito nuovamente della praticità operativa, in quanto diventa necessario provvedere a realizzare un numero elevato di pose per ciascun campo inquadrato.

Prendendo in considerazione, ad esempio, dei filtri dotati di una banda da 1nm, e volendo coprire tutto lo spettro del visibile, sarebbero necessari centinaia e centinaia di filtri, per ciascuno dei quali diventa indispensabile effettuare altrettante riprese. Questa strada, perciò, risulta essere una decisamente improponibile…

Per avere risoluzioni spettrali superiori a quelle ottenibili con i filtri fotometrici si utilizzano quindi gli spettroscopi. Le caratteristiche di questi strumenti, come quelle dei telescopi ai quali sono collegati, dipendono fortemente dagli obiettivi che si vogliono raggiungere, ad esempio: classificazione spettrale delle stelle, misura della velocità di rotazione delle galassie, analisi chimica delle nubi interstellari, ricerca di pianeti extrasolari o altro ancora.

Personalmente ho scelto di operare nel campo della spettroscopia a bassa risoluzione. La strumentazione che utilizzo è quindi composta da un telescopio Newton da 8” F5, da un acromatico 80/400 di guida, da uno spettroscopio, da una camera di guida CMOS e una camera di ripresa CCD di buona qualità.

Lo spettroscopio è composto da una fenditura regolabile, da un collimatore da 32mm di focale, da un reticolo di diffrazione a trasmissione da 100 righe/mm, rimovibile dal percorso ottico, e da un obbiettivo da 32mm.

1
Figura 1

 

Con il reticolo rimosso, agendo sulla fenditura, si agisce selezionando l’oggetto da analizzare; per essere più precisi, più che di fenditura dovremmo parlare di una “maschera” poiché, data la corta focale del telescopio, una fenditura propriamente detta non dovrebbe essere più ampia di pochi micron: risulta quindi evidente che mantenere un soggetto, spesso dotato di una luminosità superficiale molto debole, perfettamente centrato su una fenditura propriamente detta per i lunghi tempi necessari ad effettuare una acquisizione di segnale di valore, non è cosa semplice… Pertanto, al suo posto, una più semplice “maschera” viene impiegata, al solo ed esclusivo scopo di evitare la presenza di stelle luminose e di disturbo laddove si andrà poi a disperdere lo spettro.

La figura 1, di cui sopra, è stata ripresa durante la fase di iniziale aggiustamento della posizione delle lame della fenditura, per centrare il nucleo di due galassie (NGC7319 e NGC7320) appartenenti al famoso quintetto di Stephan.

2
Figura 2

 

La figura 2 è stata ottenuta con la stessa strumentazione, ma senza l’interposizione dello spettroscopio, con un tempo di integrazione di circa due ore. La larghezza della maschera, simulata con il rettangolo rosso, è di circa quindici pixel, approssimativamente cinque volte il valore del FWHM delle stelle presenti.

3
Figura 3

 

La figura 3, rappresenta lo spettro ottenuto con circa novanta minuti di integrazione, chiaramente risultante dall’interposizione del reticolo di diffrazione tra OTA e camera di ripresa. Per allineare le immagini, realizzate con pose da cinque minuti, è stata utilizzata una stella presente all’interno della fenditura e visibile nell’ordine zero dello spettro. Le righe verticali sono dovute all’atmosfera terrestre, generate prevalentemente dalle lampade dell’illuminazione pubblica. Le righe orizzontali sono gli spettri degli oggetti selezionati.

In particolare, il riquadro individuato con la lettera A, evidenzia lo spettro della galassia NGC7319, mentre quello indicato con la lettera B individua quello relativo alla galassia NGC7320. Le altre righe orizzontali sono spettri di stelle appartenenti alla nostra galassia. La galassia NCG7319 presenta delle intense righe di emissione, evidenziate nella foto con le frecce, caratteristica che contraddistingue la presenza di un nucleo attivo: si tratta quindi di una galassia di tipo Seyfert.

4

Figura 4

 

Il grafico della figura 4 è stato ottenuto elaborando la figura 3, togliendo il contributo del cielo e, successivamente, tarando la sola dispersione. Per effettuare la taratura è stata presa come riferimento una stella di classe A, nel caso specifico Vega, che è caratterizzata da righe di assorbimento dell’idrogeno ben evidenti. In verde sono riportate le righe di emissione di alcuni elementi in quiete e le barrette orizzontali evidenziano lo spostamento verso il rosso della NGC7319. La velocità di allontanamento indicativamente risulta essere di 6700km/s. Il segnale disperso dello spettro della galassia NGC7320 è basso e rumoroso e non presenta righe che emergono dal continuo.

La spettroscopia a bassa risoluzione di oggetti deboli, effettuata con piccoli telescopi, può fornire informazioni scientificamente di grande interesse, qualora la dispersione del poco segnale raccolto sia in buona parte concentrata in poche righe di emissione.

5
Figura 5

 

La figura 5 è stata ottenuta con una integrazione di dieci minuti ed è relativa al quasar 3C273. Rispetto alla figura 3, la mascheratura qui utilizzata è stata più larga e, come conseguenza, la risoluzione spettrale del fondo cielo è risultata un po’ meno definita. La risoluzione limitata dalla maschera di soggetti estesi è indipendente dal seeing, mentre quella relativa a soggetti puntiformi è direttamente condizionata dal seeing e dagli errori di inseguimento.

6
Figura 6

 

La figura 6 è stata ottenuta eliminando dalla figura 5 il fondo cielo e tarando lo spettro sia in dispersione che in ampiezza. Per eseguire le tarature è stata utilizzata la stella Denebola. Le prime tre righe della serie di Balmer dell’idrogeno sono particolarmente intense rispetto alle altre e risultano spostate verso il rosso. La velocità di allontanamento è di poco inferiore al 16% della velocità della luce, che corrisponde, secondo la legge di Hubble, ad una distanza di oltre 2 miliardi di anni luce.

7
Figura 7

 

La notte del 22 dicembre scorso, nella galassia CGCG58-57 è stata segnalata una probabile supernova di magnitudine 16,4 da parte del ASAS-SN, denominata AT2016izg. La sera del 23 dicembre ho deciso di verificare le modifiche che avevo apportato allo spettroscopio, puntando proprio quella probabile supernova. La figura 7 è la ripresa effettuata con circa un’ora di posa; le barrette rosse evidenziano la supernova in questione.
La sera stessa ho estratto lo spettro della SN e, dopo aver eseguito le necessarie tarature in dispersione ed ampiezza, ho osservato un profilo che avevo già visto altrove: si poteva riconoscere l’ampia e profonda banda di assorbimento del silicio. Successivamente mi sono collegato a “GELATO”, ho caricato il file dello spettro della probabile supernova e dopo pochi secondi è comparso l’esito dell’analisi: supernova Ia, al 100%.

8
Figura 8

 

La figura 8 è stata scarica da “GELATO”. Qualche giorno dopo è arrivata la conferma ufficiale con ATEL 9904 da parte del Mayall/KOSMOS che si trattava proprio di una supernova tipo Ia.

Questa è solo una piccola panoramica di risultati ottenibili con strumentazione amatoriale ed uno spettroscopio fatto in casa. L’emozione provata in quell’istante, ovviamente, è il vero motore di tutto, è quell’emozione di cui accennavo all’inizio, ed è ciò che sprona uno spettrofilo a portare avanti le sue ricerche, migliorando la propria strumentazione e migliorandosi sempre!