Ingrandire molto serve solo per Luna, pianeti e stelle doppie, ma occhio a non esagerare altrimenti si avrà l'effetto simile a quello della precedente fotografia.

La (vera) potenza di un telescopio

“Che bello questo telescopio, quanto ingrandisce?”

È questa la domanda che spesso mi fanno durante le serate pubbliche, ed è la stessa domanda che feci io al mio ottico di fiducia quando dovetti scegliere il mio primo strumento, nel lontano 1993.

Se la domanda è sensata, la risposta è spesso spiazzante, soprattutto nelle sfumature più ironiche, che possono suonare più o meno così: “In teoria anche un milione di volte”, oppure: “Niente, se non ci metti l’oculare”, o ancora: “Infinito!”. Benché ironiche, queste tre risposte raccontano a modo loro i pezzi di una realtà che spesso spiazza chi non conosce ancora il mondo dell’astronomia amatoriale: l’ingrandimento di uno strumento può essere piccolo o grande a piacere, perché dipende dagli oculari che si usano, ma l’immagine che otterremo non sarà sempre nitida e luminosa.

A livello prettamente matematico, l’ingrandimento di uno strumento è dato dal rapporto tra la focale del telescopio, che è fissa, e la focale di un accessorio, che si chiama oculare e che serve per rendere visibile l’immagine all’occhio. Di oculari ce ne sono moltissimi, dalla focale di 2 millimetri a 40 e più millimetri. Inoltre, altri accessori, chiamati lenti di Barlow, possono raddoppiare, triplicare o addirittura quintuplicare gli ingrandimenti, a parità di oculare. Di conseguenza, un telescopio da 1000 mm di focale può lavorare da 10 a 2000 ingrandimenti o più, se inseriamo 2 lenti di Barlow da 5X. “Caspita, a 10 mila ingrandimenti riuscirò a vedere persino la bandiera lasciata dagli astronauti sulla Luna!” No, purtroppo le cose non stanno così. Io, a 10 anni, quando iniziai a fare astronomia non lo sapevo, ma presto mi resi conto di tutto ciò quando comprai un oculare da 4 mm di focale e una lente di Barlow 2X, superando i 400 ingrandimenti con il mio piccolo rifrattore da 90 mm di diametro e vedendo praticamente nulla persino sulla brillante Luna.

L’ingrandimento di ogni telescopio non rappresenta una misura della sua “potenza”, piuttosto è solo il mezzo con cui cerchiamo di sfruttare al massimo le sue prestazioni, che sono fissate dal diametro dell’obiettivo e dalla qualità con cui sono stati lavorati lenti e specchi.

Le quantità fondamentali di uno strumento astronomico sono la capacità di raccolta della luce, che permette di osservare oggetti più deboli di quelli visibili a occhio nudo, e il potere risolutivo, ovvero la capacità di mostrare piccoli dettagli degli oggetti astronomici. Entrambe queste due quantità dipendono prima di tutto da quanto è largo il telescopio, cioè dal diametro delle lenti o dello specchio primario. Questi elementi ottici devono naturalmente essere lavorati in modo preciso, affinché non ne vengano intaccate le prestazioni determinate dalle leggi della fisica. Ecco, allora, perché non è possibile costruire un telescopio con una semplice lente di ingrandimento o con uno specchio da barba che ingrandisce le immagini: la loro lavorazione è di gran lunga insufficiente per fare osservazioni anche solo decenti.

Se la qualità con cui sono lavorati gli elementi è buona, il diametro rappresenta l’unico (o quasi) elemento per valutare la potenza di un telescopio, perché è questo che determina il potere risolutivo e quanta luce posso raccogliere dagli oggetti deboli. Attraverso l’ingrandimento si cercherà di arrivare al limite delle possibilità del telescopio, ma non potremo mai aumentarne le prestazioni oltre quelle determinate dal suo diametro (e qualità ottica).

Se ora inseriamo nel contesto anche gli oggetti astronomici che ci piacerebbe osservare, si capisce anche un’altra cosa che a me, tanto tempo fa, stupì non poco: tranne i pianeti, tutti i più brillanti oggetti del cielo profondo, ovvero ammassi stellari, nebulose e galassie, hanno un’estensione angolare simile, o addirittura superiore, a quella della Luna piena vista a occhio nudo! Il problema, quindi, nella grande maggioranza dei casi non è ingrandire l’oggetto per osservarlo meglio, ma riuscire a trovare un ingrandimento, di solito modesto, tale per cui entra nel campo e allo stesso tempo la sua luce non viene diluita così tanto da risultare quasi invisibile.

Quasi tutti gli oggetti del cielo profondo vengono osservati al meglio tra i 30 e i 150 ingrandimenti, a prescindere dal diametro del telescopio. La loro debolezza intrinseca rende quasi sempre vano ogni tentativo di osservazione in alta risoluzione, cercando dettagli piccolissimi che non potremmo mai vedere.

Solo con l’osservazione di pianeti, Luna e stelle doppie si possono aumentare gli ingrandimenti fino a cercare di sfruttare tutto il potere risolutivo dello strumento. Una regola empirica vuole che, per osservare tutti i minuti dettagli di oggetti brillanti, l’ingrandimento massimo debba essere compreso tra le 2 e le 2,5 volte il diametro del telescopio espresso in millimetri. Ecco allora che un telescopio da 100 mm di diametro può sfruttare con profitto ingrandimenti fino a 200-250 volte e solo su soggetti brillanti che mostrano dettagli ad alto contrasto e luminosità (e nelle serate “buone”!). Questo ingrandimento è sufficiente per sfruttare il potere risolutivo dello strumento. Continuare a ingrandire è possibile ma l’effetto è simile a quello che si ottiene ingrandendo a dismisura una fotografia sul computer.

L’esempio con una fotografia calza molto bene e fa capire alla perfezione la situazione (rima fatta!). Immaginiamo di avere un’immagine con una risoluzione superiore a quella dello schermo; se vogliamo vedere tutto il campo ripreso dobbiamo ridurne le dimensioni: quest’osservazione a basso ingrandimento ci fa percepire meno dettagli piccoli, perché anche se ci sono il nostro occhio non li riesce a vedere. Ingrandendo l’immagine perdiamo la visione d’insieme ma possiamo arrivare a vedere sempre maggiori dettagli. Alle dimensioni originali otteniamo di fatto quello che per un telescopio è il massimo ingrandimento utile: stiamo osservando una piccola porzione dell’immagine ma riusciamo ad ammirare tutti i piccoli dettagli che prima non potevamo percepire (sebbene fossero presenti). Se continuiamo a ingrandire ben oltre le dimensioni originali non otteniamo alcun miglioramento della visione, perché abbiamo già visto tutta la risoluzione catturata dalla foto, che è stata fissata al momento dello scatto e che nessun ingrandimento può alterare.

 

Ingrandire un oggetto è come fare zoom su una fotografia: quando superiamo un certo ingrandimento l'immagine si sfoca e non ci restituisce più dettagli.

Ingrandire un oggetto è come fare zoom su una fotografia: quando superiamo un certo ingrandimento l’immagine si sfoca e non ci restituisce più dettagli.

 

Ingrandire molto serve solo per Luna, pianeti e stelle doppie, ma occhio a non esagerare altrimenti si avrà l'effetto simile a quello della precedente fotografia.

Ingrandire molto serve solo per Luna, pianeti e stelle doppie, ma occhio a non esagerare altrimenti si avrà l’effetto simile a quello della precedente fotografia.

Ecco allora che abbiamo imparato una cosa molto importante, che è fondamentale per fare il primo passo verso l’astronomia amatoriale e capire anche di chi ci si può fidare quando vogliamo dei consigli sull’acquisto di un telescopio. Il mio ottico, tanto tempo fa, quando gli feci quella domanda sugli ingrandimenti mi consigliò un telescopio che poteva arrivare a quasi 600 volte, invece di un altro che non avrebbe superato i 300 ingrandimenti. Entrambi erano rifrattori da 90 mm di diametro, solo che uno aveva una focale di 500 mm e l’altro di un metro. Secondo voi, ora che sapete come stanno le cose, avrei dovuto fidarmi della sua competenza astronomica?

32

Ortoscopici a confronto

Test ortoscopici: Takahashi Mc Abbe Ortho vs Kasai vs Baader Genuine Ortho + test su Giove tra C9 e TS ONTC 8” f/5

Da un po’ di tempo sono tornati di gran moda gli oculari ortoscopici, dopo una bella diffusione dei vari oculari a grande estrazione pupillare, che hanno avuto il pregio di rimediare ad uno dei principali difetti dello schema ortoscopico: la bassa estrazione pupillare. Invece ora in molti tendono a ricercare la massima prestazione, ed ecco che gli ortoscopici sono tornati sulla cresta dell’onda.

Io personalmente amo gli ortoscopici, perché preferisco sempre usare degli oculari ad alte prestazioni per concentrarmi meglio sui limiti dello strumento piuttosto che stare a capire se e quanto un oculare incide su quello che vedo. Usando molti strumenti diversi, era una scelta obbligata, ma che mi ha sempre ben ripagato.

Nella mia collezione personale ho i Kasai, i Baader Genuine Ortho (la prima versione, quelli fatti in Giappone) e i nuovi arrivati, i Takahashi Mc Abbe Ortho. Quindi tutte lenti di ottima fattura costruiti nel paese del Sol Levante.

I test li ho fatti a ripetizione sul soggetto che secondo me poteva sviscerare le piccole differenze tra i vari oculari: Giove. Grazie al basso contrasto superficiale ho ritenuto che fosse il soggetto ideale per capire i limiti dei vari modelli.

Telescopi usati: C9 (Nexstar Evolution 925) e TS ONTC 8” f/5 – anche il test di questi due strumenti merita un appunto a parte.

Primo round: Kasai 12.5mm VS Takahashi 12.5mm – strumenti usati: C9 e ONTC 8”

Il seeing non era male, ho iniziato ad osservare col C9 e con l’ONTC poi. Il Kasai si è rivelato un pelo più morbido del Takahashi, nel senso che nel Taka le bande erano disegnate in modo molto più netto, così come i vari festoni. La Grande Macchia rossa, in levata sul bordo del pianeta, si mostrava in modo spettacolare. Una differenza più rilevante è nella resa del colore: nel Kasai è più calda, mentre nel Taka è più fredda, più neutra. Il Takahashi si è rivelato superiore del 20-30% rispetto al Kasai. Riguardo il colore dell’immagine, la cosa è puramente soggettiva: la differenza la fa il gusto dell’osservatore, anche se ovviamente non è che il Taka cambi il colore delle cose, sono differenze che credo non si possano neanche notare senza una comparazione diretta. Invece una differenza ENORME l’ha fatta la comodità di osservazione: il Kasai con la sua forma a punta era TERRIBILMENTE scomodo, mentre il Taka, col suo paraluce molto corto, era davvero comodissimo e riparava anche bene dalle luci parassite (ho condotto il test in pieno centro città tra i lampioni). Una nota interessante è stato notare come il Taka venisse messo a fuoco in posizione ben più esterna rispetto al Kasai.

 

Secondo round: Baader Genuine Ortho 9mm VS Takahashi 9mm

Ho usato sempre il C9 e l’ONTC da 8”, le considerazioni su questi due strumenti le trovate in fondo al test.  Il Baader offre, come il Takashi, una buona comodità nell’osservazione, anche se la presenza di quel piccolo paraluce, quando si osserva in mezzo a luci parassite, l’ho trovata davvero comoda. A livello di resa cromatica il Baader si è comportato come il Kasai, offrendo immagini più calde rispetto a quelle più fredde del Takahashi. A livello di prestazione la differenza, sinceramente, c’è tutta. Se nel Baader si vedevano la seb e la neb, nel Takahashi si vedevano anche le altre bande minori, questo per dare un metro di paragone, ovviamente senza troppo sforzo. Il Takahashi focalizzava inoltre i satelliti in modo più efficace, raggiugendo così il corretto punto di fuoco più velocemente e con minor sforzo.

 

Terzo round: Baader Genuine Ortho 7mm VS Takahashi 6mm VS Kasai 6mm- C9 e ONTC 8”

La differenza tra questi tre ortoscopici è più evidente alzando gli ingrandimenti. Il Baader ed il Kasai fanno vedere bene (il Kasai un filo meglio, ma la scomodità la fa da padrona), mentre il Takahashi fa proprio vedere. I particolari sul disco del pianeta sono staccati in modo evidente, mentre negli altri due sono po’ più sfumati. Come sempre, ad alti ingradimenti, le differenze si vedono bene.

Conclusioni: sono tutti e tre dei buoni ortoscopici, solo che il Taka secondo me si è rivelato un eccellente ortoscopico. Non solo per le qualità ottiche che rispecchiano in pieno il blasone del marchio, ma anche la costruzione dimostra una bella cura progettuale: quel piccolo paraluce mi ha aiutato non poco durante le osservazioni, nel ripararmi dalle luci parassite (leggasi lampioni) che avevo intorno. Il Takahashi mette a fuoco più esternamente rispetto agli altri ortoscopici, può fare piacere a chi ha bei problemi di backfocus.

Considerazioni sul C9 e sull’ONTC da 8” f/5: entrambi due ottimi strumenti. Il C9, come sempre, quando usato in modo proprio, dice la sua. Mi ha stupito l’ONTC invece: i particolari mostrati erano gli stessi del C9, ma proprio gli stessi! D’altronde l’ONTC ha ottiche selezionate al banco ottico e la qualità costruttiva è nettamente migliore rispetto ad un newton cinese..avrei molte altre considerazioni, ma direi che meritano un articolo a parte!

7

Oculari super grandangolari: campi visivi a confronto

Sono in arrivo i nuovi oculari TS da 20mm a 100°, 5mm e 3.5mm a ben 110°, ma alla fine, se abbiamo già degli oculari grandangolari, quanto possono rendere in più? Giustificano il cambio?
Vi posto alcune schermate nelle quali potete vedere il campo apparente su soggetti estesi e non, fornito dagli oculari TS da 100° e 110°, confrontato con gli Antares Speers Waler da 82°. Gli strumenti sono un TSAPO804, un Newton TS ONTC 200/800, un Dobson 12″ f/5 e un C8

.
Nebulosa Velo – TSAPO804 – Antares 17mm 82° vs TS XWA 20mm 100°

In giallo il TS XWA 20mm, in rosso l’Antares 17mm. La differenza è evidente, anche grazie ai 3mm in più di focale del TS.

ONTC 200/800 – M8 e M20 – TS XWA 20mm 100° vs Antares 17mm 82°

In rosso l’Antares, in Arancio il TS. SI può notare come il TS consenta di abbracciare comodamente entrambi gli oggetti. Una grossa comodità poter usare visioni ultra grandangolari con strumenti che iniziano ad avere un’apertura interessante.

Dobson 12″ f/5 – Velo – TS XWA 20mm 100° vs Antares 17mm 82°

Con soggetti molto estesi che richiedono possibilmente strumenti di generosa apertura per osservarne al meglio i dettagli, il TS XWA 20mm 100° si rivela una scelta vincente, permettendo in questo caso di poter abbracciare tutta la Velo sulla 52 Cygni.

Dobson 12″ f/5 – M13 – TS XWA 5mm 110° vs Antares 4.9mm 82°

Se vogliamo guardare dei soggetti deepsky ad alti ingrandimenti, ecco che la superiorità del TS XWA 110° si manifesta, regalando una visione non sacrificata dell’oggetto.

ONTC 200/800 – M35 – TS XWA 9mm 100° vs Antares 82° 9.4mm

Il TS XWA 9 consente di osservare comodamente anche il vicino ammasso aperto. Su soggetti ancora più estesi, il vantaggio è ancora più evidente.

Ma quanto possono essere utili gli oculari da 100°e 110° su diffusi SC?

C8 – M31 – TSED40 70° vs TS XWA 20mm 100°

E’ interessante notare come il TS XWA 20mm 100° permetta quasi di raggiungere lo stesso campo inquadrato di un oculare da 70° ma di focale doppia. Tutto a vantaggio della pupilla d’uscita.

C8 – M20 – TSED40 vs TS XWA 20mm

Andando a fare un paragone su una classe di soggetti sicuramente più comune rispetto ad M31, possiamo vedere che nonostante la focale dimezzata, il TS XWA 20mm consenta ancora una visione grandangolare a sufficienza per abbracciare tutto l’oggetto, mantenendo però un fondo cielo più scuro rispetto al TS ED 40.

Soggetti molto estesi: M31 – TS XWA 20mm su TLAPO804, ONTC 200/800, Dobson 12″ f/5

  • Piccola comparativa, usando lo stesso oculare ( TS XWA 20mm ) usando però 3 strumenti diversi.
  • Dal centro: Dobson 12″, ONTC 200/800 e TSAPO804. E’ evidente come su focali corte (circa 500mm) gli oculari da 100° permettano visioni davvero ampie, mentre con focali intermedie (circa 800mm) permettano visioni sì ampie, ma beneficiando anche dell’apertura dello strumento, cosa resa ancora più evidente in strumenti come i Dobson. 

Gli oculari da 100°-110° si rivelano anche molto utili in strumenti a lunga focale come gli SC o RC, permettendo di ottenere un fondo cielo più scuro, grazie al maggior ingrandimento, rispetto ad un oculare a più lunga focale. 

Ma alla fine, vale la pena cambiare degli oculari da 82°? La risposta è sempre in quello che ci si vuole fare. Volete un campo pazzesco con piccoli apo? Volete un grande campo con un SC ma con un fondo cielo più scuro (magari si osserva da zone con molto IL)? Volete il massimo per il vostro Dobson? Volete non vedere più i bordi del campo visivo dell’oculare? Gli esempi postati sopra, mi auguro possano fornire delle indicazioni per capire se le vostre aspettative possano essere appagate da un maggior campo apparente, fornito sulla vostra strumentazione.

Personalmente appena possile li proverò in abbinata ai quadrupletti TS, per verificare se e quanto si possano estendere al visuale i benefici del campo piano in fotografia. Ovviamente vi terrò aggiornati!

Se per caso siete curiosi di vedere una comparativa per vedere la resa del campo di un oculare TS XWA con un vostro oculare, su di un vostro strumento, basta chiedere: rc@teleskop-express.it