idas_filter_P1_P2_V4_LPS_1

Un po’ di chiarezza sui filtri IDAS…

Di recente numerosi amici astrofili ci hanno chiesto alcuni chiarimenti sui filtri IDAS, e in particolare sull’utilizzo specifico delle varie tipologie di filtri…. A detta dei più, anche i forum online paiono in questo caso esser di poco aiuto, perché pare non sia stata mai fatta una vera chiarezza da parte del produttore. Effettivamente si può fare un bel po’ di confusione tra V4, P2, D1, H3, N8…

Ok, gli ultimi due me li sono appena inventati io, però dite la verità: per un attimo ci siete cascati tutti, eh?? :DDD
Eh, sì, perché in effetti mamma Hutec non fa moltissima chiarezza su quali siano le effettive destinazioni d’uso degli splendidi filtri che realizza.

Per questo motivo, ho pensato di pubblicare qui una piccola guida sintetica, che chiarisca a tutti scopo e natura dei filtri IDAS.

Come sempre buona (veloce) lettura.

LUCA ZANCHETTA – TELESKOP SERVICE ITALIA


Filtri IDAS

IDAS V4: pensato prevalentemente per il visuale, ha una banda più selettiva e un bilanciamento cromatico un po’ più inesatto. Del resto nella visione di oggetti deboli, come nelle osservazioni deepsky, l’occhio perde la quasi totalità della percezione cromatica, e rileva quindi maggiormente avere un filtraggio poderoso!

http://www.teleskop-express.it/filtri-a-banda-larga/2343-idas-lps-v4-286-hutech.html
http://www.teleskop-express.it/filtri-a-banda-larga/2336-idas-lps-v4-hutech.html
http://www.teleskop-express.it/filtri-a-banda-larga/2340-lps-v4-eos-hutech.html

filtro IDAS Hutec V4

 

IDAS P2: pensato prevalentemente per la fotografia con CCD raffreddati. Ha una gamma cromatica più ampia e fedele, e taglia in maniera molto più selettiva le emissioni delle fonti di inquinamento luminoso. Il bilanciamento dei colori è rispettato in maniera più naturale rispetto al V4 e al contempo la quantità di fotoni che riceve il sensore è molto maggiore.

http://www.teleskop-express.it/filtri-a-banda-larga/2347-lps-p2-286-hutech.html
http://www.teleskop-express.it/filtri-a-banda-larga/2344-lps-p2-31-hutech.html
http://www.teleskop-express.it/filtri-a-banda-larga/2345-lps-p2-36-hutech.html
http://www.teleskop-express.it/filtri-a-banda-larga/2338-lps-p2-48-hutech.html
http://www.teleskop-express.it/filtri-a-banda-larga/2346-lps-p2-50-hutech.html

filtro IDAS Hutec P2

 

IDAS D1: pensato prevalentemente per le DSLR a colori, ancor più se moddate full spectrum. Filtra esattamente come il P2, salva una maggior selettività nella banda 660nm-680nm. Questa selettività nel campo del rosso profondo, serve a prevenire l’eccessiva dominante rossastra che a volte si riscontra sulle DSLR modificate.

http://www.teleskop-express.it/filtri-a-banda-larga/2335-idas-lps-d1-48-hutech.html
http://www.teleskop-express.it/filtri-a-banda-larga/2341-idas-lps-d1-52-hutech.html
http://www.teleskop-express.it/filtri-a-banda-larga/2342-idas-lps-d1-72-hutech.html
http://www.teleskop-express.it/filtri-a-banda-larga/2339-lps-d1-eos-hutech.html
http://www.teleskop-express.it/filtri-a-banda-larga/2348-lps-d1-eosf-hutech.html

filtro IDAS Hutec D1

 

Una esperienza con il nostro APO 115/800 FPL51

Ormai lo sanno tutti: nel mood di questo blog, è stato già detto in tutte le salse, non c’è l’idea che la divulgazione dell’astronomia debba essere uno spazio elitario, che rende ogni spazio una sorta di cassa di risonanza autoreferenziale dei soli grandi nomi, da tributare a chi ha grandi competenze, strumenti blasonati e costosi e una esperienza strutturata di fascia altissima!

Per noi di TS Italia, gli spazi per la divulgazione astronomica devono intendersi come punti di incontro per gli astrofili, devono sempre più diventare spazi e momenti dedicati a far valere l’esperienza sul campo, la propria esperienza sul campo; quella personale, quella vera, quella genuina, qualsiasi essa sia, cercando sempre di essere costruttivi e di dare un proprio contributo. Certo una goccia nel mare. Ma una goccia che possa contare. E in fondo non è proprio questo il modo di operare di chi contribuisce alla crescita del sapere? Piccoli passi, silenti, senza troppo clamore… Amatoriali o professionali che siano!

In questo blog, insomma, vogliamo che a contare sia anche il contributo di astrofili comuni, astrofili come noi!

Oggi, quindi, vi introduco un nostro carissimo e giovane amico astrofilo, Nicola Russo, il quale, complice la giovane età – e non, come si sente dire troppo spesso, “a dispetto della giovane età” – ha dimostrato di disporre di una grandissima passione e di una genuina voglia di sperimentare e mettersi in gioco.

Per noi ha realizzato una semplice ma molto interessante prova del suo rifrattore TS APO 115/800 FPL51, effettuando anche un confronto con il suo storico TS APO 80/480 FPL53.

I contribuiti fotografici sono tutti suoi, e sono sicuramente di valore. Sono visibili cliccando sul titolo di questo post per aprirlo in dettaglio.

Grazie Nicola!

Buona lettura a tutti.

LUCA ZANCHETTA – TELESKOP SERVICE ITALIA


 

Carissimi amici astrofili vorrei scrivere due righe per una breve recensione sul rifrattore TS 115/800.

Essendo già possessore di un TS 80/480 flp53 per riprese a largo campo , mi sono più volte posto il problema di quale telescopio acquistare per riprese di galassie e planetarie.

All’inizio ero intenzionato a prendere un RC 8 o un APO 130 mm TS, ma leggendo in rete ho notato che sulla mia montatura CGEM entrambi erano abbastanza ostici da bilanciare, con il rischio di non poter fare lunghe esposizioni.

Alla fine mi sono soffermato su questo rifrattore 115/800, che mi intrigava molto; leggendo tra i vari forum e avendo trovato online alcune recensioni, ho notato che in molti erano dubbiosi, in particolare, per il fatto che il telescopio monta dei vetri FPL51. Volendolo comunque acquistarlo, ho cercato su Astrobin alcune foto realizzate con questo telescopio e ne sono rimasto molto colpito.

Oggi posso dire che mai scelta è stata più felice: rapporto qualità/prezzo davvero buono, robustezza e praticità unica e ottimo focheggiatore, molto robusto: l’ho utilizzato sia con la reflex 40D sia con la camera CCD QHY10, non notando alcuna problematicità, con entrambi i setup. Sono riuscito a realizzare guide di oltre 500 secondi, con ottimi risultati.

Grazie allo spianatore/riduttore TSRED 0.79x, sono riuscito a sfruttare eccellentemente i generosi sensori della reflex e del CCD.

Il tubo dispone anche di un paraluce estraibile, davvero fluido e utilissimo.

Infine, parliamo un po’ di questi famosi vetri FPL51: sarà forse perché non mi considero ancora un astrofilo di grande esperienza, oppure sarà legato al fatto che effettuo le mie riprese prevalentemente sotto un cielo cittadino, con inquinamento luminoso notevole, ma nella mia modesta esperienza trovo che la differenza rispetto ai più blasonati e costosi vetri FPL53, come quelli presenti nel mio TS 80/480, sia davvero estremamente contenuta.

Le stelle con questo telescopio risultano perfettamente puntiformi e prive di aberrazioni cromatiche su tutto il campo!
Posso dire con certezza che, per chi oggi è intenzionato ad acquistare un rifrattore di qualità con apertura superiore ai 100mm, avendo anche un occhio di riguardo al budget, il TS 115/800 è forse la scelta migliore!

Nicola Russo

La Mineral Moon

Come fotografare una bellissima Mineral Moon

La Luna è l’oggetto celeste più fotografato e fotogenico. A piccoli o alti ingrandimenti, di notte e persino di giorno, in fase sottile o quando è quasi piena, è un obiettivo che garantisce sempre un grande spettacolo.

L’unico problema del nostro satellite sono i colori. Illuminato dalla luce del Sole, quel pezzo di roccia che ci orbita intorno da 4,5 miliardi di anni mostra una colorazione priva delle bellissime sfumature che invece possiamo trovare facilmente su Marte, Giove, Saturno, per non parlare degli oggetti del profondo cielo. La sua superficie scura, dalla brillanza simile a quella dell’asfalto appena steso, sembra essere priva di quei contrasti cromatici che incantano i nostri occhi e ci consegnano un Universo pieno di colori.

La Luna ha dei colori? Ha tonalità reali? E nel caso, come possiamo superare le limitazioni dei nostri occhi e osservare queste sfumature?
La risposta è affermativa e prevede di applicare una semplice tecnica chiamata Mineral Moon. Prima, però, dobbiamo capire quali sono i veri colori della Luna, se ne ha.

La superficie selenica è composta da rocce simili a quelle terrestri e, proprio come qui sulla Terra, ci sono zone in cui la composizione chimica può cambiare, a seconda del tipo di minerali prevalenti. Ogni minerale ha una colorazione tipica, anche se questa è spesso molto più tenue di quella che può percepire l’occhio. Se varia l’abbondanza di un certo minerale, è allora scontato pensare che possa cambiare, in modo leggero, il colore. Sulla Terra possiamo capire meglio la situazione: le zone del deserto del Sahara sono rosate, mentre quelle del deserto australiano appaiono rosse. Sulla Luna accade una cosa simile, anche se le differenze cromatiche sono molto tenui e visibili solo attraverso un’opportuna tecnica fotografica.

La Mineral Moon è una tecnica molto semplice di fotografia che prevede di catturare immagini a grande campo del nostro satellite con sensori a colori e di applicare una semplice tecnica di elaborazione che ci permetterà di estrapolare la grande quantità di informazione contenuta nelle nostre fotografie.

 

La strumentazione

La strumentazione adatta è costituita da una normale reflex, anche non modificata, al fuoco diretto di un telescopio che NON sia un rifrattore acromatico, poiché questi soffrono di cromatismo. Tutti i catadiottrici e i telescopi Newton sono perfetti allo scopo (e anche i rifrattori apocromatici veri, cioè con almeno 3 lenti). Non importa il diametro perché non siamo interessati, almeno all’inizio, a una stratosferica risoluzione. Le foto più spettacolari, infatti, si ottengono includendo tutto il disco lunare nel campo inquadrato, magari in prossimità della Luna piena, così sappiamo anche cosa fare in quelle notti di solito poco prolifiche per le osservazioni astronomiche.

 

Tecnica di ripresa

L’acquisizione delle immagini non è dissimile da quella necessaria per fotografare i pianeti. Si catturano tanti frame, in formato grezzo (raw) tutti identici. È importante raccogliere tanti scatti per aumentare la dinamica dell’immagine e ottenere così un’immagine in cui i colori saranno ben visibili. Non c’è un limite ma in generale sarebbe meglio catturare almeno 100 frame, scattando a bassa sensibilità, magari 100 ISO. Non aumentare la sensibilità di scatto perché si incrementa il rumore e diminuisce la dinamica, che è l’unica cosa che davvero conta in questo caso.

I momenti migliori per fare gli scatti sono quando il nostro satellite si trova molto alto sull’orizzonte. Questa richiesta è fondamentale per evitare che la nostra atmosfera alteri in modo irreversibile i tenui colori che vogliamo estrapolare.

 

Elaborazione

Dopo aver allineato e sommato i singoli scatti con programmi come Registax o Autostakkert, cercando di scartarne il meno possibile, tanto la risoluzione effettiva non conta molto, dobbiamo lavorare sull’immagine grezza in due fasi, una dedicata esclusivamente al colore e l’altra alla risoluzione.

Creiamo due copie identiche della nostra immagine grezza. Useremo una di queste come canale di crominanza, al quale quindi cercheremo di estrarre al meglio i colori tralasciando i contrasti. L’altra versione la trasformeremo in bianco e nero e applicheremo delle maschere di contrasto, concentrandoci solo sul lato dei contrasti e della risoluzione. Questa sarà la base di “luminanza” che poi coloreremo con la versione a cui avremo estrapolato i colori. Agendo in questo modo possiamo sfruttare sia l’informazione cromatica che quella spaziale, senza sacrificare nulla del segnale che abbiamo raccolto con tanta fatica.

Sulla copia dedicata al colore non dobbiamo applicare alcuna maschera di contrasto ma agire in due modi. Prima di tutto dobbiamo eliminare la dominante giallastra tipica del nostro satellite, che rappresenta solo il contributo della luce solare. Per fare questo possiamo operare un bilanciamento del bianco, selezionando come punto campione una zona dalla colorazione neutra (di solito NON nei piatti mari, che tendono a essere azzurri). A volte anche la funzione “colore automatico” di Photoshop aiuta molto e restituisce un’immagine priva di dominante generale. L’obiettivo è avere un’immagine che sembra (ma non lo è) in bianco e nero, senza dominanti.

A questo punto possiamo passare alla fase successiva: aumentare la saturazione del colore fino a far comparire i colori ma senza creare artefatti. In generale è meglio procedere a piccoli passi, aumentando la saturazione di circa il 30% ogni volta invece che farlo in un’unica soluzione. Piano piano vedremo la Luna colorarsi. Ci fermeremo solo quando cominceremo a vedere il rumore di fondo e l’immagine diventerà molto granulosa. Non bisogna applicare altri strani filtri, come quelli fotografici, che fanno più danni che altro: ricordiamo infatti che stiamo cercando di rappresentare la realtà come è e non come vorremmo che fosse!

Ecco i colori della Luna! L’immagine, però, non è proprio bella a livello estetico, ecco perché abbiamo a disposizione l’altra copia trasformata in bianco e nero e a cui abbiamo applicato qualche maschera di contrasto per renderla bella.

I colori ci sono ma l'immagine è molto granulosa. Non importa, per questo abbiamo creato una versione di luminanza che coloreremo con questa.

I colori ci sono ma l’immagine è molto granulosa. Non importa, per questo abbiamo creato una versione di luminanza che coloreremo con questa.

Prendiamo allora la nostra crominanza, un po’ brutta, e copiamola sulla versione di luminanza, trasformata in immagine a colori. Allineiamo i due livelli e impostiamo il modo di unione su “colore”. Come per magia, l’informazione del colore viene trasferita sulla versione esteticamente più gradevole e la nostra Mineral Moon è pronta!

Le due versioni a confronto. A sinistra ci siamo concentrati solo sulla luminanza e sui dettagli. A destra solo sul colore. Ora dobbiamo unire al meglio le due informazioni.

Le due versioni a confronto. A sinistra ci siamo concentrati solo sulla luminanza e sui dettagli. A destra solo sul colore. Ora dobbiamo unire al meglio le due informazioni.

 

Sovrapponendo il file di crominanza a quello di luminanza e unendo con il metodo "colore" ecco che la magia è completa: una foto che mostra i dettagli e i veri colori della Luna!

Sovrapponendo il file di crominanza a quello di luminanza e unendo con il metodo “colore” ecco che la magia è completa: una foto che mostra i dettagli e i veri colori della Luna!

La Mineral Moon

La Mineral Moon

I colori sono reali? Certo! Anche se l’occhio non li percepisce, non vuol dire che non esistono, piuttosto che il nostro apparato visivo non ha la sensibilità sufficiente a restituirceli, come d’altra parte accade a tutti gli oggetti del profondo cielo. La realtà è molto più ampia del piccolo spicchio accessibile al nostro occhio. In un certo senso, allora, è più corretto dire che è la versione monocromatica che noi possiamo vedere di solito, della Luna e delle nebulose, a non essere reale, perché la realtà, indagata con strumenti più sensibili e oggettivi, mostra un Universo pieno di colori!

Immagini di questo tipo, oltre a essere belle per la vista, contengono dati interessanti dal punto di vista geologico. Certo, la precisione nel determinare gli elementi prevalenti non è elevatissima ma possiamo dire, ad esempio, che le zone rosse sono povere di ferro e in generale più antiche, mentre quelle blu rivelano aree ricche di titanio. Chissà che un giorno anche queste nostre foto non serviranno ai primi minatori lunari come indicazione su dove trovare maggiori quantità dei preziosi minerali che cercheranno di estrarre.

Albino Carbognani: piccoli punti di luce che si muovono in cielo

Quando si parla di nomi come questo, ogni presentazione risulta superflua; tuttavia non posso fare a meno di spendere alcune brevi parole su Albino Carbognani, che oltre ad essere uno dei grandi nomi dell’astronomia nel nostro paese, e un amico di vecchia data, si rivela essere persona sempre capace di sorprendere. Uno di quelli che riesce a mostrarti, a farti capire davvero, che chi nasce astrofilo, astrofilo rimane. Per tutta la vita! Al di là dei successi conseguiti nel mondo scientifico; al di là della ricerca professionale; al di là persino degli strumenti pazzeschi coi quali puoi operare ogni santo giorno, fino a renderli routine.

L’astrofilia, ci insegna Albino, è qualcosa in più, qualcosa che va oltre la semplice osservazione amatoriale del cielo.

L’astrofilia è contemplazione, l’astrofilia è stupore, l’astrofilia è passione; grande, che non si spegne mai. È quella strana forma di sana follia che ti fa svegliare nel cuore della notte, anche se qualcuno all’altro capo del letto ti invita a restare; anche se fuori c’è un mondo assonnato, avvolto dal gelo. Ti fa alzare, preparare, impegnare e faticare per ore, se serve, al solo scopo di poter osservare ancora una volta quel piccolo puntino luminoso lassù… È quell’istinto che ti spinge a fare e impegnarti ancora, con il cuore, con l’anima, con il poco tempo libero che hai, con i conti che non tornano mai, anche quando già in tanti, prima di te, si sono cimentati con quel CCD su quella galassia.

È un desiderio, una fame, che non passa mai; neanche quando sai, come il nostro Albino, che lo strumento che stai per usare, il TUO telescopio, l’estrinsecazione materiale di ciò che fa di te un astrofilo, all’osservatorio non farebbe nemmeno la funzione di guida.

Ecco, questo è il modo in cui voglio introdurre oggi lo splendido articolo di Albino, che pubblico qui sotto: un grande lavoro, di un grande amico, ma soprattutto di un grande astrofilo!

 

LUCA ZANCHETTA – TELESKOP SERVICE ITALIA

 

 


 

Piccoli punti di luce che si muovono in cielo

Come e perché fare la fotometria degli asteroidi

 

Albino Carbognani, Ph.D.

Spesso e volentieri gli astrofili che usano telescopio, montatura computerizzata e camera CCD hanno come obiettivo principale l’astrofotografia di oggetti deep-sky, cioè la ripresa di nebulose, ammassi stellari e galassie, principalmente per fini estetici con la rincorsa al dettaglio più tenue. Si tratta di una attività che può dare molte soddisfazioni, i sottili disegni delle nebulose e le delicate trame delle galassie hanno il loro indubbio fascino. Peraltro l’astrofotografa richiede un notevole investimento in attrezzatura piuttosto sofisticata, senza contare il tempo che richiede per ottenere buoni risultati.

Considerato l’investimento sulla strumentazione può essere interessante chiedersi come si possa svolgere anche una attività interessante dal punto di vista scientifico: l’imaging deep-sky non esaurisce sicuramente tutte le possibilità di utilizzo. Certo, quando si fa scienza si devono compiere delle misure e questo può complicare la strada da percorrere per ottenere dei risultati, ma la soddisfazione alla fine sarà veramente notevole. Sotto questo punto di vista gli asteroidi offrono diverse possibilità entusiasmanti!

 

L’astrometria dei NEA

La prima attività scientifica cui si può pensare quando si tratta di corpi minori è la caratterizzazione orbitale degli asteroidi near-Earth (NEA). Si tratta degli asteroidi che con la loro orbita possono passare a meno di 0,3 UA dalla Terra. Sulla scala dei milioni di anni le orbite dei NEA sono talmente instabili (cioè caotiche) che rappresentano un potenziale rischio impatto per il nostro pianeta. Complessivamente ne sono noti più di 15.600 e negli ultimi anni la media delle nuove scoperte è di circa 1000 ogni anno. Grosso modo è noto il 95% dei NEA con diametro pari o superiore al km, poco meno di 1000 oggetti. L’obiettivo ora è la scoperta e caratterizzazione della maggior parte degli oggetti con diametro superiore ai 140 m, attività che richiederà ancora parecchi anni per essere portata a termine perché più si scende con il diametro e maggiore è il numero degli oggetti. Il valore minimo di 140 m per il diametro può sembrare piccolo, in realtà non lo è affatto se si considera che la celebre Catastrofe di Tunguska del 30 giugno 1908 è stata provocata dalla caduta di un piccolo asteroide di soli 50 metri di diametro! In effetti il danno che un asteroide è in grado di provocare è sì proporzionale alla massa ma anche al quadrato della velocità di caduta. Essendo quest’ultima dell’ordine di svariate decine di km/s ecco che anche un piccolo oggetto può causare un danno rilevante.

Un tipico NEA è quindi un oggetto “piccolo” e anche molto scuro perché la superficie assorbe gran parte della luce solare. Per questo motivo un NEA può essere scoperto solo quando è già in prossimità della Terra e approssimativamente nella direzione opposta al Sole. A questo scopo è necessario impiegare grandi telescopi con ampi campi di vista, in grado di scansionare l’intera sfera celeste nel più breve tempo possibile e ripetere il processo in continuazione. Chiaramente attrezzature di questo tipo sono oltre le possibilità di un astrofilo. In effetti le survey che si occupano della scoperta dei NEA sono tutte statunitensi, fra quelle di maggior successo ci sono la Catalina Sky-Survey in Arizona, che utilizza due telescopi da 68 e 150cm di apertura, e Pan-STARSS nelle Hawaii con due telescopi da 180 cm di diametro.

Il contributo degli astrofili diventa importante nella fase successiva alla discovery, quando gli oggetti appena scoperti vengono inseriti nella NEO Confirmation Page (NEOCP) del Minor Planet Center per la conferma e la determinazione preliminare dell’orbita. Peraltro contribuire alla caratterizzazione astrometrica di un NEA, oltre al valore scientifico del lavoro, ha il suo indubbio fascino!

Purtroppo però, negli ultimi anni si è assistito ad un progressivo aumento della magnitudine dei NEA da confermare, come è logico aspettarsi visto che tutti gli asteroidi “grossi” oramai sono noti. Di conseguenza, mentre nel 2005 anche con un piccolo telescopio da 25-30 cm di diametro c’era solo l’imbarazzo della scelta perché gli oggetti avevano una magnitudine apparente attorno alla +18, ora si veleggia attorno alla +20 con tendenza a salire. Chiaramente se il diametro del telescopio è troppo piccolo, diventa difficile ottenere delle immagini misurabili per dare il proprio contributo.

Tuttavia la determinazione dell’orbita non esaurisce tutto quello che si può fare su un NEA o, meglio, su un asteroide di Fascia Principale (MBA). Infatti, una volta nota l’orbita, dell’asteroide in sé non conosciamo ancora niente. Per questo il passo successivo all’astrometria è la fotometria, che permette di studiare fisicamente l’asteroide: in primo luogo di determinare il periodo di rotazione. La buona notizia è che si tratta di un campo di ricerca dove anche con un piccolo telescopio si può dare il proprio contributo e che si possono fare delle scoperte del tutto inattese!

Attualmente, nel database del Minor Planet Center ci sono circa 474.000 asteroidi numerati, di cui appena 20.200 (circa il 4,3 %), hanno un nome. Dai dati presenti nell’Asteroid Lightcurve Database, uno dei punti di riferimento per chi si occupa di fotometria degli asteroidi, gli oggetti numerati di cui è noto il periodo di rotazione sono circa 16.000, pochissimi rispetto al totale dei numerati: solo il 3,4%. Considerate le magnitudini in ballo per un tipico MBA (da +14 alla +16), si tratta di un settore dove si può dare il proprio contributo originale anche con telescopi di piccolo diametro (20-30 cm). La caratterizzazione fisica degli asteroidi è un campo di ricerca con ampie possibilità di sviluppo, anche per i prossimi anni, e poi fare la fotometria degli asteroidi permette di caratterizzare fisicamente questi antichi testimoni dell’evoluzione del Sistema Solare.

 

La strumentazione per la fotometria

Vediamo qualche indicazione strumentale sul “setup ideale” da utilizzare per la fotometria degli asteroidi. Prima di tutto il telescopio deve avere almeno 20 cm di diametro e deve essere accessoriato con una buona camera CCD a 16 bit, cioè con circa 216 = 65.536 livelli di intensità possibili. La camera deve essere almeno raffreddata con una cella Peltier avente un delta T di 30-40 °C rispetto alla temperatura ambiente e deve essere del tipo non-ABG, cioè senza antiblooming. L’antiblooming, utile per l’estetica delle foto deep-sky, non deve essere presente perché con quest’ultimo si perde in sensibilità, risoluzione e risposta lineare tutte caratteristiche importanti quando si fa ricerca scientifica. Il sensore deve essere del tipo in bianco/nero per massimizzare l’efficienza quantica e la camera può essere dotata di una ruota portafiltri con filtri standard B, V, R e I di Johnson-Cousins. La scala dell’immagine CCD può oscillare da 1 a 2 secondi d’arco per pixel, dipende dalle condizioni di seeing locali, in modo tale che il diametro stellare sia descritto da almeno 2-3 pixel. In ogni caso, per questo tipo di lavoro non sono necessarie le lunghe focali tipiche delle riprese planetarie in alta risoluzione, o i lunghissimi tempi di posa caratteristici della fotografia deep-sky.

Per avere misure fotometriche attendibili è necessario che l’immagine dell’asteroide non sia in saturazione ed è obbligatorio fare i file di calibrazione standard da applicare alle immagini, riprese ovviamente nel formato FITS (Flexible Image Transport System) standard. Da evitare nel modo più assoluto formati compressi come il jpg perché si perde l’informazione fotometrica. I file di calibrazione necessari sono il master dark, ottenuto dalla mediana di alcune decine di dark frame presi alla stessa temperatura e identico tempo di esposizione delle immagini e il master flat, ottenuto dalla media di almeno alcune decine di flat frame singoli, ovviamente ciascuno corretto con il proprio master dark.

La presenza di un telescopio di guida e di una camera di autoguida con porta ST4 da collegare alla montatura può non essere necessaria se la montatura equatoriale è sufficientemente stabile e robusta, visto che i tempi di posa tipici sono al più di alcuni minuti. La montatura equatoriale deve essere preferibilmente del tipo a forcella per evitare i problemi fotometrici che può dare il meridian flip, l’inversione degli assi che avviene attorno al passaggio in meridiano e che, di solito, affligge le equatoriali alla tedesca. Per compensare il meridian flip si può ritardare il più a lungo possibile l’inversione della montatura in questo modo si possono ottenere curve di luce più continue, cioè senza “gradini”. Caldamente consigliata infine la presenza del computer per il puntamento automatico, per non perdere tempo prezioso nella fase di ricerca degli asteroidi in cielo.

Per quanto riguarda la scelta dei target interessanti, NEA o MBA, si possono consultare le ultime pagine del Minor Planet Bulletin (vedi http://www.minorplanet.info/mpbdownloads.html), la rivista scientifica internazionale liberamente disponibile in pdf e punto di riferimento per professionisti e non per quanto riguarda la fotometria degli asteroidi.

 

La fotometria d’apertura

In astrofisica con il generico termine fotometria si indica lo studio della radiazione ottica emessa da un corpo celeste, avente una lunghezza d’onda fra 400 e 700 nm (1 nm = 10-9 m). Si parla invece di radiometria quando si considera anche la radiazione emessa al di fuori dell’intervallo del visibile.

In una tipica immagine con una posa superiore alla decina di secondi, le sorgenti puntiformi (stelle, asteroidi ecc.), vengono convolute dagli effetti della turbolenza atmosferica, dall’ottica del telescopio, dalle vibrazioni del tubo ottico e così via. Il risultato è che la distribuzione della luce sul sensore può essere descritta da una superficie gaussiana. Di solito la fotometria che viene fatta sulle immagini CCD, dopo la correzione per master dark e master flat, è la fotometria d’apertura. Con questa tecnica si sovrappone al target un anulus di misura con un diametro pari a 3 volte la full width at half maximum (FWHM), cioè la larghezza a mezza altezza del tipico profilo gaussiano che ha la sorgente puntiforme. Prendere 3 volte la FWHM di una sorgente puntiforme equivale a prendere un anello con un diametro pari a circa 7,1 volte il valore di sigma della gaussiana (vale la relazione 1 FWHM 2,355), quindi con 3 FWHM si è sicuri di includere praticamente tutto il segnale proveniente dalla sorgente puntiforme e raccolto dai pixel del CCD.

a

Figura 1. Gli anulus di misura di una sessione di fotometria d’apertura riguardante l’asteroide near-Earth 2002 WP. I cerchi gialli sono per il target, il verde è per la prima stella di confronto, i cerchi rossi sono per le altre quattro stelle di confronto.

Il CCD è un dispositivo a risposta lineare quindi l’intensità I di una stella (in unità arbitrarie), ottenuta sommando l’intensità di tutti i pixel che compongono l’immagine della stella (o dell’asteroide), all’interno dell’anello di misura sarà direttamente proporzionale al flusso luminoso ricevuto. All’intensità I del target va però tolto il valore del segnale proveniente dal fondo cielo e non dalla sorgente che ci interessa. Il valore della intensità del fondo cielo si ottiene leggendo il valore di intensità dei pixel posti in un anello più esterno ma concentrico a quello di misura della sorgente, possibilmente senza stelle di fondo (vedi Fig. 1). Se indichiamo con B il valore del fondo cielo (che si ottiene dal valore medio del pixel del fondo moltiplicato per il numero di pixel misurati del target), il segnale del solo target sarà dato da:

1  (1)

Noto il segnale S della sorgente, si può calcolare quella che è nota come magnitudine strumentale:

2  (2)

Qui t è il tempo di posa dell’immagine e S/t è una quantità proporzionale al flusso della sorgente. In questo modo si possono confrontare le magnitudini strumentali dello stesso target ma riprese con tempi di posa diversi.

Una volta misurata la magnitudine strumentale del target e delle stelle di confronto si può ottenere la variazione di magnitudine del target in funzione del tempo usando la tecnica della fotometria differenziale. La fotometria differenziale consiste essenzialmente nel misurare la differenza di magnitudine strumentale fra il target e la media delle magnitudini strumentali di due o più stelle di confronto scelte nello stesso campo di vista. Rispetto alla fotometria calibrata quella differenziale non richiede particolari condizioni di trasparenza costante del cielo e fornisce una buona accuratezza quando si tratta di misurare piccole variazioni di luminosità (inferiori al decimo di magnitudine), perché sia la luce del target sia delle stelle di confronto attraversano la stessa air-mass e, se hanno colore simile, subiscono anche gli stessi effetti di estinzione atmosferica.

In effetti, volendo essere pignoli, la differenza delle magnitudini strumentali differisce di una quantità proporzionale alla differenza degli indici di colore CI dalla differenza delle magnitudini apparenti vere secondo l’equazione:

3  (3)

Tuttavia, nel caso degli asteroidi che riflettono la luce del Sole gli indici di colore sono grossomodo simili a quelli della nostra stella (B-V = 0,66 e V-R = 0,53), e se anche si osserva senza filtri ma si usano come stelle di confronto quelle di tipo solare, allora le differenze delle magnitudini strumentali saranno praticamente uguali alle differenze delle magnitudini apparenti perché il secondo termine della Eq. (3) si annulla o è molto piccolo.

Ovviamente, visto che gli asteroidi si spostano in cielo sia per effetto del moto orbitale attorno al Sole sia per effetto del moto eliocentrico della Terra, il set di stelle di confronto utilizzabile per la fotometria differenziale cambia da una sera all’altra (o da un’ora all’altra nel caso di NEA veloci), e una delle prime difficoltà da superare sarà il “raccordo” fra le curve di luce appartenenti a sessioni diverse, specialmente se il periodo di rotazione è molto lungo. Il problema del raccordo delle sessioni è evidente nel caso della semplice fotometria differenziale, mentre si riduce notevolmente con la fotometria assoluta, calibrata usando come riferimento fotometrico le stelle di confronto del campo di vista. Non entreremo nel dettaglio della fotometria calibrata, ma i cataloghi stellari utilizzabili, entro alcuni centesimi di magnitudine e per target fino alla mag +15, come riferimento per le magnitudini sono l’UCAC4 (USNO CCD Astrograph Catalog), il CMC15 (Carlsberg Meridian Catalogue) e l’ultima release dell’APASS (AAVSO Photometric All-Sky Survey).

La selezione dell’asteroide da osservare avviene in base agli obiettivi che ci si propone di raggiungere, alla magnitudine apparente, alla velocità angolare, al range di air-mass e al numero di ore che un asteroide può essere osservato (in generale più sono e meglio è). Anche in condizioni di bassa turbolenza atmosferica, il target deve essere ad almeno 25° di altezza sull’orizzonte (air-mass = 2,4), in modo da minimizzare gli effetti deleteri del cattivo seeing e dell’assorbimento atmosferico che abbassano il rapporto segnale/rumore.

Gli asteroidi si spostano sulla sfera celeste, non sono target statici specialmente i near-Earth, di conseguenza il tempo di esposizione è determinato in base alla necessità di avere una immagine del target relativamente puntiforme sull’immagine, anche se in campo fotometrico una certa elongazione è ben tollerata dai software di misura. Un tempo di esposizione ragionevole (in minuti) sarà dato dalla FWHM (in secondi d’arco) diviso per la velocità angolare del target (secondi d’arco/minuto). In questo modo si raddoppiano le dimensioni della FWHM nella direzione del moto dell’asteroide, una elongazione ancora facilmente misurabile. Le esposizioni tipiche sono di 30-240 s per i MBA, la cui velocità angolare tipica è di 0,5 arcsec/minuto, e di 5-120 s per i NEA con velocità tipiche di 5-10 arcsec/minuto.

Fissato il tempo di esposizione bisogna verificare su immagini di prova che il valore del rapporto segnale/rumore (o SNR, Signal to Noise Ratio), sia adeguato alla incertezza fotometrica che si vuole raggiungere. Questo è un punto importante, spesso sottovalutato: non basta che l’asteroide sia genericamente visibile sull’immagine per avere automaticamente una buona fotometria. Facendo qualche stima si trova che per avere una precisione fotometrica con una incertezza di 0,02 mag è necessario avere SNR 50. Un valore eccellente è SNR 100, perché l’incertezza scende a 0,01 mag mentre un valore ancora accettabile, specialmente per asteroidi con una discreta ampiezza della curva di luce, è SNR 25 a cui corrisponde una incertezza di circa 0,04 mag. Di solito il SNR viene stimato direttamente dal software fotometrico quindi non è necessario avventurarsi in calcoli complessi.

Uno dei software di riferimento per la fotometria degli asteroidi, sia differenziale sia calibrata, è MPO Canopus (http://www.minorplanetobserver.com/MPOSoftware/MPOCanopus.htm) di Brian Warner. Per la verità con Canopus è possibile anche la fotometria delle stelle variabili anche se non è il suo utilizzo principale. Questo programma richiede un certo periodo per l’apprendimento del corretto utilizzo, fase che non va saltata pena il rischio di ottenere risultati fotometrici errati o poco attendibili. Caldamente consigliata anche la lettura del libro “A Practical Guide to Lightcurve Photometry and Analysis”, scritto dallo stesso Warner ed edito dalla Springer, in cui vengono illustrati in dettaglio i principi della fotometria asteroidale. Sono diversi i settori dove la fotometria degli asteroidi può dare un contributo, fra questi vedremo in dettaglio:

  1. La determinazione del periodo di rotazione

  2. La spin-barrier e la “caccia” ai large super-fast rotator

b

Figura 2. Una tipica sessione di MPO Canopus dopo l’analisi di Fourier, con la curva di luce dell’asteroide in fase e il corrispondente spettro dei periodi.

 

Determinazione del periodo di rotazione di un asteroide

Una tipica sessione di fotometria differenziale per la determinazione del periodo di rotazione di un asteroide vede la ripresa di immagini in modalità “fitta”, cioè una dietro l’altra, per una durata di diverse ore. Nel caso di asteroidi con periodo di rotazione completamente sconosciuto l’osservazione fotometrica deve essere fatta su almeno 2-3 notti consecutive prima di sperare di avere una buona misura (a meno che l’asteroide non sia un rotatore lento!). Generalmente, i periodi sono di 6-8 ore quindi almeno due-tre sessioni lunghe sono il minimo per avere una buona probabilità di successo. A questa segue la fase di riduzione dei dati: scelta delle stelle di confronto nel campo di vista, misura della magnitudine strumentale del target e delle confronto, calcolo della media delle magnitudini strumentali delle stelle di confronto da sottrarre al target e, infine, plot della magnitudine differenziale in funzione del tempo. Può capitare che una delle stelle scelta per il confronto non sia costante, in questo caso ci potrebbe scappare anche la scoperta di una nuova stella variabile. Per togliersi il dubbio è bene consultare il catalogo VSX, il Variable Star indeX, dell’AAVSO.

Da una o più sessioni della durata di alcune ore si otterrà la tipica curva di luce in fase di forma genericamente bimodale, cioè con due massimi e due minimi, come ci si aspetta da un generico corpo irregolare di forma allungata in rotazione attorno al proprio asse (Fig. 3). Ovviamente non sempre è così, ci possono essere curve trimodali o più complesse. In generale, vale la regola statistica che maggiore è l’ampiezza della curva di luce e più è probabile che la curva sia bimodale.

c

Figura 3. La curva di luce di un asteroide in rotazione attorno al proprio asse è una funzione periodica di periodo P e la forma più probabile è quella bimodale, cioè con due massimi e due minimi a seconda della superficie, più o meno estesa, illuminata dal Sole e rivolta verso la Terra. L’ampiezza della curva di luce si misura dal massimo al minimo assoluto.

Per la determinazione del periodo di rotazione degli asteroidi si usa l’analisi di Fourier. In MPO Canopus i dati fotometrici con le magnitudini ridotte di ogni sessione vengono fittate con una serie di Fourier di grado m finito a scelta. La stima del miglior periodo P che fitta tutti i dati è quello che fornisce il minore scarto fra la curva di Fourier teorica e i valori osservati della magnitudine (spettro dei periodi). Attenzione però: minimizzare lo scarto non garantisce l’unicità della soluzione per il periodo P, specie se la curva di luce è simmetrica, cioè massimi e minimi sono uguali fra loro o i dati non coprono una intera rotazione dell’asteroide! E ora vediamo perché può essere interessante determinare il periodo di rotazione di un asteroide.

d

Figura 4. La curva di luce in fase, il fit di Fourier al 4° ordine e lo spettro dei periodi per l’asteroide di fascia principale 3433 Fehrenbach. L’ampiezza del curva di luce è abbastanza elevata e l’incertezza sui singoli punti è di circa 0,02 magnitudini. Lo spettro dei periodi mostra un minimo principale attorno alle 4 ore (soluzione bimodale) ed un minimo secondario attorno alle 2 ore (soluzione monomodale).

 

La cohesionless spin-barrier e gli asteroidi Large Super-Fast Rotator

Gli asteroidi sono corpi celesti soggetti ad interazione collisionale e la popolazione che vediamo oggi nella Fascia Principale (o main-belt), la zona di spazio compresa fra le orbite di Marte e Giove, è il risultato di miliardi di anni di evoluzione con gli asteroidi che si sono ripetutamente scontrati fra di loro. Questo ha portato alla distruzione parziale dei corpi maggiori, che sono in grado di resistere meglio alle collisioni, e alla distruzione parziale o totale dei corpi più piccoli. La scoperta delle famiglie di asteroidi fatta dall’astronomo giapponese Hirayama nel 1918 supporta questo quadro evolutivo.

L’analisi dei periodi di rotazione dei MBA e dei NEA che da essa derivano, mostra un comportamento che, a prima vista, non ci si aspetterebbe. Se si riporta su un grafico il periodo di rotazione di ciascun asteroide in funzione del diametro si scopre un comportamento affascinante: al di sopra di circa 150-200 metri di diametro i periodi di rotazione sono pari o superiori a circa 2,2 ore, mentre per i corpi più piccoli si possono avere valori anche di molto inferiori (Fig. 6).

Il valore limite di circa 2,2 ore è noto come “cohesionless spin-barrier”, cioè barriera rotazionale senza coesione. Per spiegare la presenza di questa “soglia di sbarramento” si ipotizza che gli asteroidi più piccoli di circa 150-200 m di diametro siano blocchi monolitici, le “schegge” createsi nella collisione di asteroidi con diametro maggiore, mentre i corpi più grandi sarebbero oggetti fratturati dalle collisioni e composti di blocchi più piccoli, non coesi fra di loro, ma tenuti semplicemente insieme dalla reciproca forza di gravità (struttura a “rubble-pile” senza coesione). Un notevole esempio di asteroide rubble-pile è il NEA (25143) Itokawa, esplorato nel 2005 dalla sonda giapponese Hayabusa (Fig. 5).

e

Figura 5. L’asteroide (25143) Itokawa ripreso dalla sonda giapponese Haybusa nel 2005. Itokawa è lungo circa 500 m e non presenta crateri da impatto sulla superficie, segno che si tratta di un aggregato di rocce e polveri risultato di una collisione catastrofica che ha smembrato l’asteroide progenitore (ISAS, JAXA).

Che le cose stiano così è dimostrato dal fatto che, se si calcola teoricamente il periodo limite di un asteroide sferico con una struttura a rubble-pile e una densità media di 2,2 g/cm3, si trova proprio un periodo limite di circa 2,2 ore. Per ottenere la formula che ci serve basta osservare che il periodo limite teorico per un asteroide rubble pile senza coesione (che chiameremo Plim), si trova imponendo che l’accelerazione superficiale dovuta alla rotazione dell’asteroide di raggio R e massa totale M sia pari a quella di gravità dell’asteroide stesso (condizione di moto circolare). In questo modo si impone la condizione che i blocchi superficiali di cui è fatto l’asteroide rubble-pile seguano un’orbita circolare con raggio pari a quello del corpo stesso. Per il periodo limite si trova:

4  (4)

Nella Eq. (4) G è la costante di gravitazione universale e vale G = 6,674x10-11 m3 kg-1 s-2, mentre ρ è la densità media dell’asteroide. Si può verificare che per ρ = 2200 kg/m3 (equivalenti a 2,2 g/cm3), si ottiene un periodo limite di circa 2,2 ore. Se il periodo di rotazione diminuisce al di sotto di Plim, l’equilibrio si rompe e l’asteroide si separa nei blocchi distinti di cui è composto. Notare come questo risultato sia indipendente dal diametro stesso dell’asteroide: che sia grande o piccolo un asteroide rubble-pile che ruota troppo veloce si sfascia comunque! Secondo questo modello un asteroide rubble-pile che si trova con un periodo di rotazione al di sotto di quello della spin-barrier si frammenterà dando vita, ad esempio, ad un sistema binario. In effetti uno dei meccanismi più noti per la formazione degli asteroidi binari vede la fissione rotazionale di asteroidi rubble-pile che, a causa dell’effetto YORP, sono scesi con il periodo di rotazione al di sotto del valore della spin-barrier. Questo meccanismo spiega abbastanza bene le caratteristiche rotazionali dei primari fra le coppie di asteroidi, oggetti che hanno orbita eliocentrica simile ma che non sono legati gravitazionalmente.

Abbiamo detto che gli asteroidi con diametri più piccoli di 150-200 metri sono invece considerati veri e propri blocchi monolitici, cioè frammenti collisionali, in grado di ruotare più velocemente del valore limite dato dalla spin-barrier a causa delle intense forze di coesione interne che tengono unito il corpo. Tuttavia ci sono delle eccezioni a questa “regola”, cioè esistono alcuni asteroidi con un diametro superiore ai 200 m (quindi rubble-pile secondo il modello precedente), che però hanno un periodo di rotazione al di sotto della spin-barrier.

Il primo oggetto scoperto a violare palesemente la cohesionless spin-barrier è stato l’asteroide 2001 OE84 nel 2002. Si tratta di un asteroide near-Earth che ruota in 0,4865 ore con un diametro di circa 700 metri. Altro notevole oggetto è l’asteroide main-belt (335433) 2005 UW163 che ha un periodo di rotazione di 1,290 ore e una dimensione di 600 metri, scoperto nel 2014. Uno degli ultimi asteroidi scoperti di questo tipo è il near-Earth 2011 UW158, che ha un periodo di rotazione di 0,6107 ore e una dimensione di 300×600 metri determinata tramite osservazioni radar. Ad ora però nessun asteroide con un diametro maggiore di 1 km ruota più rapidamente di 2,2 ore.

Gli asteroidi che violano la spin-barrier sono chiamati Large Super-Fast Rotator (LSFR). La loro esistenza è stata teorizzata per la prima volta da Holsapple nel 2007 e la teoria è stata successivamente arricchita e perfezionata da Sánchez e Scheeres nel 2014. Questi ultimi autori hanno esplorato la possibilità che, grazie alle forze di van der Waals che si esercitano fra i grani di regolite interstiziali, un asteroide con una struttura a rubble-pile possa avere una forza coesiva diversa da zero. In questo teoria i grani di regolite agirebbero come una specie di “colla” in grado di tenere coesi i blocchi di maggiori dimensioni.

f

Figura 6. La frequenza di rotazione degli asteroidi (espressa in rotazioni al giorno), in funzione del diametro in km. La linea tratteggiata orizzontale è la spin-barrier, che equivale a circa 10 rotazioni/giorno. I triangoli rossi sono i sistemi binari, mentre quello verdi sono gli asteroidi con precessione dello spin (tumbler). Per spiegare l’andamento del periodo vs. diametro per gli asteroidi si ipotizza che gli oggetti più piccoli di circa 150-200 m di diametro siano blocchi monolitici, mentre i corpi più grandi sarebbero oggetti fratturati dalle collisioni composti di blocchi più piccoli, non coesi fra di loro, tenuti insieme dalla reciproca forza di gravità (struttura a “rubble-pile” senza coesione). Immagine tratta dall’Asteroid Lightcurve Photometry Database (http://alcdef.org/).

 

La “caccia” agli asteroidi LSFR

La forza di coesione della regolite inizia a diventare importante solo per corpi inferiori ai 10 km di diametro, quindi la ricerca di LSFR va fatta su asteroidi relativamente piccoli. Risulta chiaro che la fotometria degli asteroidi è una tecnica essenziale per andare a caccia degli asteroidi LSFR. Tuttavia l’osservazione dei piccoli MBA può essere difficoltosa. Ad esempio, se consideriamo un tipico asteroide di tipo S con 1 km di diametro posto a 2,5 UA dal Sole, all’opposizione avrà una magnitudine apparente di +20,3. Questo valore è piuttosto alto e fare la fotometria con piccoli strumenti diventa difficile. Per questo motivo è molto più facile andare alla ricerca di LSFR nella popolazione degli asteroidi near-Earth quando fanno il loro flyby con la Terra. I NEA hanno dimensioni che rientrano in quelle tipiche in cui si possono trovare i LSFR e possono diventare sufficientemente luminosi da essere osservati agevolmente anche in piccoli strumenti. L’unica “pecca” di questa strategia osservativa è che il moto proprio di un NEA può essere elevato e una sessione con le stesse stelle di confronto può diventare davvero breve se il campo di vista non è sufficientemente ampio. Per non avere troppi problemi con la durata della sessione ci si può limitare a considerare oggetti con un moto proprio non superiore ai 10 arcsec/minuto. Si tratta di osservazioni non facili ma che possono dare informazioni preziose sulla costituzione fisica dei piccoli asteroidi. Vale la pena andare a caccia di LSFR!

g

Figura 6. L’asteroide 2014 VQ è un NEA candidato ad essere un LSFR scoperto nel novembre 2014. Ha un periodo di rotazione di soli 7minuti e una dimensione che può andare da 165 metri (se di tipo V) a 267 metri (se di tipo S).

 

Conclusioni

Come abbiamo visto in questo breve articolo la fotometria degli asteroidi può portare a dei risultati davvero molto interessanti, sia per quanto riguarda lo studio dei singoli oggetti sia per quanto riguarda lo studio di intere popolazioni. Non abbiamo esplorato tutte le possibilità di studio ma quanto detto dovrebbe dare un’idea di quello che si può ottenere. Gli asteroidi meritano di essere studiati, come amo ripetere la migliore motivazione per fare la fotometria di un asteroide è che “non si può mai sapere quello che si troverà osservando quei piccoli punti di luce che si muovono in cielo!”.

winjupos_2009-2017_scheda_dofter

Fotografiamo la superficie di Venere!

Venere sta dominando queste serate di fine inverno e dominerà le albe di tutta la primavera, quindi non possiamo non parlare di questo faro del cielo. Non sarà però il solito post che ci insegna a osservare le solite fasi di Venere, anzi, tutt’altro!

Il nostro gemello, con dimensioni e massa molto simili, è in realtà una vera e propria Nemesi: l’atmosfera è decine di volte più densa, composta quasi per intero da anidride carbonica e con minacciose nuvole di acido solforico. Sulla superficie la temperatura, di giorno come di notte, ai poli come all’equatore, è stabile, da chissà quanto tempo, allo stratosferico valore di +460°C. Venere è un forno inospitale per qualsiasi forma di vita e per di più la sua superficie è del tutto nascosta alla nostra vista da chilometri di nuvole che non lasciano mai neanche uno spiraglio ai nostri telescopi.

Per centinaia di anni dopo l’invenzione del telescopio, nessun essere umano è riuscito a capire cosa si nascondesse sotto le nuvole venusiane, fino a quando negli anni ‘60 le prime sonde sovietiche giunsero sull’inospitale superficie.

La mappatura completa di Venere è stata effettuata dalla sonda Magellano che negli anni ’80, grazie a un radar, ha composto la prima mappa geologica e altimetrica del pianeta. Anche se noi non lo possiamo vedere, Venere ha crateri da impatto, montagne, pianure, colline, scarpate e valli. Ma siamo sicuri che non ci sia alcun modo per sbirciare la superficie venusiana senza dover friggere a bordo di un’improbabile astronave che tenta di superare quelle fitte nuvole? La Natura in questo caso ci dà una grossa mano.

La superficie di Venere, a causa dell’enorme temperatura, emette radiazione elettromagnetica, proprio come un pezzo di ferro rovente. Con un picco verso i 4 micron ma una coda di emissione che arriva anche a 800 nm, questa radiazione termica riesce a uscire in parte dalla spessa atmosfera. Attorno alla lunghezza d’onda di 1000 nm (1 micron), infatti, l’atmosfera venusiana diventa trasparente e il calore della superficie può uscire nello spazio ed essere quindi osservato. La radiazione termica di Venere è molto più debole della luce solare riflessa dall’alta atmosfera ma se ci concentriamo sul lato non illuminato quando il pianeta mostra una fase molto sottile, allora l’impossibile diventa possibile.

Con un filtro infrarosso da un micron (1000 nm) e una camera planetaria, meglio se monocromatica, o una camera CCD per profondo cielo e un telescopio da almeno 15 cm su montatura motorizzata, è possibile fare una serie di fotografie a lunga esposizione, bruciando la falcetta di Venere e lasciando che la più debole radiazione termica del lato non illuminato venga alla luce. Non potremo mai osservarla all’oculare del telescopio perché i nostri occhi non sono sensibili agli infrarossi, ma abbiamo appena scritto la ricetta per una fotografia molto speciale.

La tecnica migliore prevede di acquisire immagini a una focale non troppo elevata, poiché si tratta a tutti gli effetti di una ripresa deep-sky e non più in alta risoluzione. Focali comprese tra i 2 e i 3 metri sono ottime per questo scopo. Dobbiamo aumentare l’esposizione e/o il guadagno, senza curarci della luminosità della parte illuminata.
La magnitudine superficiale del lato non illuminato è di circa 12 su ogni secondo d’arco quadrato, circa come quella del pianeta Nettuno e molto più alta di ogni oggetto del profondo cielo. Sebbene quindi si possa osservare la debole radiazione anche con tempi di posa brevi, di circa 0,2 secondi, per avere un ottimo segnale è meglio fare tante esposizioni con tempi compresi tra 2 e 5 secondi. Se la montatura è ben stazionata al polo non si avranno neanche problemi di inseguimento. Più frame si acquisiscono e meglio è, tanto non ci sono problemi di rotazione del pianeta. L’unica limitazione è rappresentata dal fatto che è necessario fare una ripresa del genere con il Sole tramontato e con il fondo cielo scuro.

Luce cinerea? Sì, ma di Venere e non è riflessa!

Luce cinerea? Sì, ma di Venere e non è riflessa!

Se siamo bravi e pazienti e magari disponiamo di una camera CCD per le riprese del profondo cielo, oltre al suggestivo chiarore della parte non illuminata, che renderà Venere simile alla luce cinerea lunare, potremo mettere in evidenza anche strutture superficiali. Il principio è semplice: le montagne e gli altopiani avranno temperature minori rispetto alle valli e alle grandi pianure, quindi emetteranno meno radiazione termica.

In effetti, con esposizioni lunghe, telescopi da almeno 15 centimetri, una fase della parte non illuminata inferiore al 25%, un cielo ormai scuro e acquisendo qualche centinaio di frame, è possibile mostrare la traccia inequivocabile di dettagli superficiali. Questa è una piccola rivoluzione per noi: con la nostra strumentazione possiamo fotografare la superficie di Venere, in barba a tutti quei tossici e infernali strati nuvolosi!

Non ci credete? E allora osservate questa foto che ritrae i principali dettagli superficiali, che ho composto con le immagini ottenute nel 2009 e il 18-19 febbraio scorsi. Questo è l’aspetto del nostro pianeta gemello e questo è quello che si potrà vedere da qui a pochi giorni prima della congiunzione con il Sole del 23 Marzo. Ma poi, all’alba, i giochi potranno ricominciare di nuovo e almeno fino alla metà di maggio potremo ancora cacciare questa elusiva “luce cinerea” venusiana con i nostri strumenti. Non lasciamoci sfuggire questa ghiotta occasione, altrimenti dovremo aspettare più di un anno per riprovare l’impresa!

Dettagli superficiali di Venere

Dettagli superficiali di Venere

 

jupiter_20111017_2220_gasparri

Campionamento e focale equivalente nella fotografia astronomica

Nelle osservazioni visuali le immagini vengono ingrandite attraverso gli oculari. Nella fotografia astronomica non ha più senso parlare di ingrandimento, perché al posto dell’occhio si inserisce un sensore digitale senza obiettivo e l’immagine, a rigor di logica, non viene ingrandita. In questi casi si parla di scala dell’immagine o campionamento, le grandezze che determinano “l’ingrandimento” delle immagini digitali.

Il campionamento, o scala dell’immagine, rappresenta la dimensione angolare di cielo che riesce a riprendere un singolo pixel del sensore. Quindi, questo determina anche il più piccolo dettaglio che è possibile, in teoria, risolvere. Una scala dell’immagine di 2”/pix (secondi d’arco su pixel) indica che ogni pixel inquadra una porzione di cielo con lato di 2”. Poiché i pixel sono i punti che formeranno l’immagine digitale, tutto quello che ha dimensioni inferiori a 2” non sarà mai risolto dal sensore. Questo prescinde dalla turbolenza atmosferica e da diametro dello strumento e rappresenta una specie di potenziale. È infatti certo che un’ipotetica scala dell’immagine di 40”/pixel non risolverà mai delle strutture di galassie o nebulose inferiori a questo valore. D’altra parte non è detto, anzi, non è proprio possibile dai nostri cieli, che un campionamento di 0,5”/pixel riesca a mostrarci dettagli di questa dimensione angolare perché saranno rovinati dalla turbolenza atmosferica, anche se usassimo un telescopio in grado di mostrarceli. Il campionamento, quindi, non determina direttamente la risoluzione dell’immagine ma ci permette di capire parametri fondamentali come il campo di ripresa che si ha con una certa accoppiata telescopio – sensore, quindi dà indicazioni su quali soggetti possiamo riprendere al meglio e se saremo limitati o meno dalla turbolenza atmosferica.

Calcolare il campionamento di un’immagine è facile utilizzando la seguente formula:

C = (Dp /F) x 206265,

dove C = campionamento (in secondi d’arco su pixel) , Dp = dimensioni dei pixel del sensore utilizzato e F = focale del telescopio. Dp e F devono avere le stesse unità di misura; 206265 è il fattore di conversione tra radianti e secondi d’arco. Di solito le dimensioni dei pixel sono espresse in micron, mentre quelle della focale in millimetri. Niente paura: un micron corrisponde a 0,001 millimetri.

 

Campionamento ideale nelle fotografie a lunga esposizione

Un principio, detto criterio di Nyquist, applicato al campo ottico afferma che per sfruttare una determinata risoluzione occorre che il più piccolo dettaglio visibile cada almeno su due pixel adiacenti. Se consideriamo che nel mondo reale è meglio se il più piccolo dettaglio risolvibile cada su almeno 3 pixel, possiamo giungere a importanti conclusioni su quale possa essere il massimo campionamento efficace nella fotografia a lunga esposizione. Se la risoluzione massima a cui possiamo ambire è determinata dalla turbolenza media ed è intorno ai 2,5-3”, a prescindere dal diametro del telescopio, significa che le scale dell’immagine più basse che possiamo usare prima di avere l’effetto delle stelle a pallone e dettagli sempre sfocati sono dell’ordine di 0,8”-1”/pixel. Nelle condizioni medie, di fatto non conviene quasi mai lavorare con scale più piccole di 1”-1,5”/pixel.

L’effetto più grave di quello che si chiama sottocampionamento, cioè lavorare con scale più grandi, è mostrare stelle così piccole che potrebbero diventare quadrate, perché questa è la forma dei pixel, ma d’altra parte avremo sempre dettagli degli oggetti estesi ben definiti e contrastati, con una profondità in termini di magnitudine ancora ottima. L’effetto di un sovracampionamento, cioè di una scala dell’immagine più bassa di quella limite, è quello di restituire stelle sempre molto grandi e dettagli degli oggetti estesi sfocati e indistinti. Come se non bastasse, un sovracampionamento produce anche una perdita, a volte notevole, di profondità perché la luce si espande su più pixel invece di venir concentrata in una piccola area. Il mio consiglio, quindi, è di non esagerare con la scala dell’immagine e di preferire immagini “meno ingrandite” ma più definite a improbabili zoom che mostrerebbero nient’altro che un campo confuso e molto rumoroso. Questo ragionamento vale sia per le riprese telescopiche, in cui si dà per scontato che il seeing sia il limite alla risoluzione rispetto al diametro dello strumento, che per le fotografie attraverso obiettivi e teleobiettivi, in cui il limite deriva dal potere risolutivo dell’ottica.

Conoscendo il campionamento e il numero di pixel dei lati del sensore, possiamo subito comprendere quanto sarà grande il nostro campo di ripresa e capiremo se sarà possibile riprendere al meglio un’estesa nebulosa o una debole galassia.

Districandosi in questa specie di giungla, potremo costruire un setup più specifico per la tipologia di oggetti che più ci piace. A livello generale e personale, finché useremo delle semplici reflex digitali non vale la pena farsi troppi conti perché tanto per queste non c’è molta scelta a livello di dimensioni dei pixel e del formato del sensore. Quando invece parliamo di CCD (o CMOS) astronomici, che dobbiamo scegliere con molta attenzione, il campionamento che otterremo con il nostro setup rappresenta il punto più importante per la scelta. Sarà infatti inutile, e frustrante, usare un sensore con pixel di 5 micron su un telescopio Schmidt-Cassegrain da 1,5-2 metri di focale, che ci darà un campionamento di 0,70-0,50”/pix e potrebbe venir sfruttato in pieno solo dal deserto di Atacama. Nelle nostre località otterremo sempre stelle a “pallone” e oggetti diffusi molto deboli e rumorosi, tanto da richiedere ore e ore di integrazione per mostrare dettagli interessanti. Un risultato simile si sarebbe ottenuto con una scala dell’immagine anche tre volte superiore e un tempo di integrazione totale dalle 4 alle 9 volte inferiore.

Avere pixel molto piccoli comporta anche una perdita di sensibilità e dinamica, perché un pixel più piccolo raccoglie meno luce e può contenere molti meno elettroni di uno più grande, con la conseguenza che il range dinamico del sensore si può ridurre anche di 5 volte tra pixel da 5,6 micron e da 9 micron. Poiché un sensore astronomico è qualcosa che dovrebbe durare per molti anni e le serate buone si possono contare in un anno sulle dita di due mani, è meglio sceglierne uno che si accoppi in modo perfetto al nostro telescopio. Se ci piacciono primi piani di galassie è meglio ingrandire le immagini in elaborazione che lavorare a una scala piccolissima.

 

Campionamento ideale nell’imaging in alta risoluzione

Quando parliamo di fotografia in alta risoluzione le cose cambiano drasticamente perché, grazie a pose molto brevi e un enorme numero di frame catturati, possiamo sperare di abbattere il muro eretto dalla turbolenza atmosferica media e spingerci verso la risoluzione teorica dello strumento, fino a un limite di circa 0,3” nelle zone più favorevoli e nelle migliori serate. Quando il seeing collabora, quindi, possiamo impostare la scala dell’immagine sui limiti di risoluzione teorica dello strumento che stiamo utilizzando. Una buona relazione per determinare la risoluzione alle lunghezze d’onda visibili è quella di Dawes:

PR = 120/D

Dove PR = potere risolutivo, in secondi d’arco, e D = diametro del telescopio espresso in millimetri.

Come già detto, affinché il sensore sia in grado di vedere questa risoluzione occorre che questa cada su 3-4 pixel: né molto più, né molto meno. In queste circostanze, allora, il nostro obiettivo sarà quello di lavorare a cavallo del campionamento ottimale, che può essere espresso dalla semplice formula:

Cott= 37/D

Dove D = diametro del telescopio espresso in millimetri e Cott = campionamento ottimale, espresso in secondi d’arco su pixel. Come possiamo vedere dal confronto con la formula di Dawes, cambia di fatto solo il coefficiente numerico, che è inferiore di poco più di tre volte, proprio come abbiamo detto con le parole. Il valore ottenuto, come quello della formula di Dawes, rappresenta un punto di riferimento alle lunghezze d’onda visibili e non un numero da rispettare in modo rigoroso. Scostamenti del 10-20% sono ancora accettabili e, anzi, incoraggiati, poiché ogni sensore, telescopio e soggetto possono preferire valori leggermente diversi dalla semplice teoria con cui abbiamo ottenuto questi.

I valori che raggiungiamo sono tutti piuttosto piccoli ed ecco spiegato il motivo per cui nell’imaging planetario è preferibile usare sensori con pixel di dimensioni ridotte, tra i 3 e i 7 micron al massimo: l’opposto di quanto si preferisce fare nella fotografia a lunga esposizione.

Nonostante questo, i rapporti focale tipici si aggirano tra f20-22 (per pixel da 3,7 micron) e f 30-35 (per pixel da 5,6 micron) e si rende necessario inserire oculari o lenti di Barlow per aumentare la focale nativa del telescopio. Invece di fare complicati calcoli sul rapporto focale raggiunto con un certo oculare o Barlow, per capire a quale campionamento reale si sta operando il modo migliore è fare dei test riprendendo un pianeta, ad esempio Giove. Misurando l’estensione in pixel e confrontandola con il diametro apparente che si può leggere da ogni software di simulazione del cielo, possiamo trovare il campionamento reale della ripresa applicando questa formula:

Ccalc = dang/dlin

Dove dang  sono le dimensioni angolari (in secondi d’arco) e dlin  il diametro misurato dell’immagine, espresso in pixel. Il campionamento restituito sarà in secondi d’arco su pixel. A questo punto la focale con cui è stata fatta la ripresa sarà:

Feq = Dp/ C

Dove Dp  sono le dimensioni dei pixel del sensore, espresse in millimetri e C il campionamento (calcolato sull’immagine o stimato, non cambia). La focale restituita sarà in millimetri. Il rapporto focale sarà dato dalla semplice relazione Feq / D, con D = diametro del telescopio, in millimetri. Queste formule sono valide in generale, quindi anche per le riprese del profondo cielo.

Anche in questa circostanza, avere a disposizione miliardi di pixel è dannoso, e molto più rispetto alla fotografia del profondo cielo (in cui il danno principale è l’esigenza di avere telescopi dall’enorme capo corretto, quindi molto costosi). Poiché il campionamento ideale è fissato e i pianeti hanno dimensioni angolari ridotte, per ottenere ottime immagini non potremo avere, ad esempio, Giove esteso per 4 milioni di pixel. Il sovracampionamento nell’imaging in alta risoluzione è distruttivo e sarebbe sempre da evitare, molto più che nella fotografia a lunga esposizione nella quale, almeno, possiamo sperare di allungare il tempo di integrazione per sopperire in parte al danno che abbiamo fatto.

Nella fotografia in alta risoluzione “ingrandire” troppo l’immagine ci allontanerà sempre da un risultato ottimo. Anche se all’inizio potrebbe sembrare che ottenere delle “pizze” ingrandite a dismisura possa essere entusiasmante, in barba ai teorici del campionamento ideale, stiamo osservando un risultato che è sempre peggiore rispetto a quanto avremmo ottenuto con “l’ingrandimento” giusto. Non è un’opinione, è un fatto e anche se non piace non si può cambiare.

Se i pianeti saranno estesi al massimo qualche centinaio di pixel (se abbiamo strumenti oltre i 20 cm), che ce ne facciamo di un sensore che ne possiede diversi milioni? Niente, a meno che non ci vogliamo dedicare espressamente a panorami lunari, ma anche in queste circostanze ci sono comunque dei limiti. Usare sensori con più di 2-3 milioni di pixel per fare imaging in alta risoluzione non è una buona soluzione perché si riduce di molto il framerate, cioè la frequenza con cui si acquisiscono le immagini, che in alta risoluzione è fondamentale avere almeno a 15-20 frame al secondo (fps).

testa_cavallo_30ottobre_newton25_26x720_web_2

Una libreria di miei fit grezzi per fare pratica

L’astronomia è condivisione, sia se la facciamo per hobby che per professione. La condivisione diventa necessaria quando parliamo di dati, di fotografie e di tutto ciò che può essere utile alla scienza o nell’apprendere nozioni in un campo nuovo. Se nessuno condividesse le proprie esperienze sarebbero molto pochi gli appassionati del cielo e ancora meno i progressi fatti dalla scienza negli ultimi secoli.

Spesso mi hanno chiesto quale fosse il segreto delle mie immagini, quale magica pozione utilizzassi per elaborarle. Molti sono infatti convinti che la magia di una foto la si crei nella fase di elaborazione, dove con qualche software potente come Photoshop potremo estrarre dettagli sorprendenti di una nebulosa, magari partendo da una sfocata fotografia a un segnale stradale. Certo, tutto è possibile, anche questo, ma credo che sarebbe bello partire da un’immagine reale e fare tutte quelle operazioni che non alterano il segnale catturato. L’obiettivo di un’elaborazione, sia pur estetica, di una fotografia astronomia dovrebbe essere quello di mostrare al meglio tutto il segnale catturato, senza cambiarlo, senza interpretare la realtà che resta quella che il nostro sensore digitale ha catturato. La tentazione di passare dalla fase di elaborazione a quella di fotoritocco può essere grande, soprattutto quando la nostra voglia di ottenere buoni risultati si trasforma in frustrazione vedendo in giro capolavori in apparenza irraggiungibili.

La fase fondamentale della realizzazione di un’ottima immagine astronomica si affronta sempre durante lo scatto, sul campo, spesso al freddo e all’umido. E’ una fase che spesso inizia prima dello scendere del buio, quando dobbiamo trovare il luogo adatto, privo di luci e di umidità, allineare il cercatore, collimare lo strumento (se serve), stazionare in modo perfetto la montatura verso il polo, scegliere il soggetto migliore per la serata e la strumentazione, che deve avere certe caratteristiche, impostare la guida, curare l’inquadratura, la messa a fuoco e poi sperare che per almeno 3-4 ore vada tutto bene, perché quando tutto funziona ed è stato ottimizzato l’unico segreto è questo: esporre, esporre ed esporre per 3-4-5 e più ore. Solo in rarissimi casi si possono ottenere splendide fotografie con un tempo di integrazione totale inferiore a un’ora e sempre la potenziale bellezza di uno scatto aumenta all’incrementare del tempo che gli dedichiamo, non di fronte al computer a elaborarlo ma sotto il cielo, a raccogliere fotoni che hanno viaggiato per migliaia o milioni di anni luce.

Proprio per dare un punto di riferimento a chi cerca di addentrarsi nel mondo della fotografia a lunga esposizione del profondo cielo o per tutti coloro che vogliono capire come migliorare i propri risultati, ho messo a disposizione una serie di fit scattati al cielo coon differenti strumenti e sensori. Per questioni di spazio non ho potuto mettere a disposizione i file singoli con i frame di calibrazione ma solo i file grezzi calibrati e sommati. Potete utilizzarli per fare pratica, divertirvi con gli amici, provare a scovare (e ce ne sono molti) i difetti. Potete pubblicarli per uso non commerciale citando sempre l’autore. Non dovete mai, in nessun caso, eliminare i riferimenti per l’autore o, peggio, spacciarli per vostri perché se vi becco sono cavoli amari 🙂 .

Alcune immagini non le ho elaborate neanche io ancora, per mancanza di tempo, quindi non ho la minima idea di come potranno venire. Molte altre, invece, le trovate elaborate nella mia gallaery su astrobin: http://www.astrobin.com/users/Daniele.Gasparri/collections/253/

Ecco l’elenco completo da cui poter scaricare le immagini. I file sono compressi in formato zip. All’interno troverete il file fit. Ho scelto questo formato, che Photoshop non legge a meno di scaricare il programma gratuito Fits Liberator, perché è lo standard internazionale per tutti i dati astronomici. Tutti i software appositi lo leggono, compreso Deep Sky Stacker, Nebulosity, Iris, Registax, MaxIm DL, PixInsight, AstroArt…

Mettete questo post tra i preferiti perché con il tempo verrà aggiornato con nuovi scatti, compresi quelli in alta risoluzione:

Qualcuno riconosce il campo inquadrato? La scala è la stessa della fotografia delle Pleiadi, solo che in questo caso ci sono molti più colori: è un vero spettacolo!

Come fotografare in modo spettacolare i colori delle stelle

Fare foto al telescopio, inseguendo nebulose, galassie e ammassi stellari è il sogno proibito di molti appassionati di astronomia, che spesso si infrange di fronte alle difficoltà tecniche, strumentali ed economiche richieste. Non si deve avere fretta, è un percorso che va fatto con pazienza e determinazione: questo è quanto viene detto sempre. Sì, d’accordo, ma da qualche parte dovremo pur cominciare, no? Magari abbiamo a disposizione una reflex digitale e un piccolo telescopio e ci piacerebbe iniziare a fare qualche semplice scatto, giusto per provare.

Di solito si comincia a fare foto alla Luna, poi a qualche pianeta brillante. Per andare oltre e fare le lunghe esposizioni richieste per immortalare gli oggetti del cielo profondo serve un salto di qualità non indifferente: una montatura equatoriale molto robusta, uno strumento buono dal punto di vista ottico e meccanico, un sistema di controllo dell’inseguimento, detto autoguida. Il fiume da guadare è piuttosto largo e profondo, soprattutto se non disponiamo di una montatura equatoriale all’altezza.

Prima di decidere se accontentarsi di quello che si ha, o svuotare il portafogli e ipotecare il futuro con il proprio partner, che potrebbe non apprezzare la vostra decisione, possiamo dedicarci a un tipo di fotografia astronomica attraverso il telescopio che non richiede costosi strumenti, né complesse montature. Anzi, a dire la verità non richiede neanche di inseguire le stelle!

La tecnica che sto per descrivere è stata portata alla ribalta negli anni ’80 e ’90 da un astronomo dell’Anglo Australian Observatory, che i più esperti forse già avranno sentito nominare: David Malin. Munito di una semplice attrezzatura e un po’ di inventiva si era chiesto, grazie al suo background scientifico: è possibile riprendere il colore delle stelle in modo più efficace rispetto a quanto accade in una normale fotografia? Non è infatti difficile notare come molte delle foto del profondo cielo mostrino stelle tendenzialmente bianche. Solo con una grossa dose di manipolazione software i più bravi astrofotografi riescono a tirare fuori qualche tonalità, ma non è una strada molto agevole, né spettacolare.

Partiamo allora dal principio alla base di questa nostra nuova esperienza di fotografia astronomica: le stelle si mostrano di diversi colori. A parte gli astri di classe A, come Vega, che appaiono completamente bianchi, tutti gli altri puntini sono colorati, anche se i nostri occhi faticano a notare la tonalità a causa della scarsa saturazione e della minore efficienza del nostro sistema visivo in condizioni di bassa illuminazione. Le fotocamere, però, non hanno questi problemi e per di più potremo aumentare la saturazione quanto vogliamo in fase di elaborazione per esasperare le differenze di colore delle stelle. Non si tratta di un mero esercizio di astrofotografia e di elaborazione: i colori delle stelle, reali, dipendono dalla loro temperatura superficiale. Possiamo quindi fare anche della scienza dall’esperienza che stiamo per fare, cosa che non guasta mai.

Quando fotografiamo una stella ben messa a fuoco dal telescopio la sua luce si concentra in pochissimi pixel che spesso diventano rapidamente saturi, se non in fase di acquisizione quando andiamo a regolare curve e livelli con qualche software. Da questa considerazione è nata l’idea geniale di Malin: per mostrare il colore delle stelle dobbiamo far espandere la loro luce su un’area maggiore, in modo che non si rischi di saturare i pixel. Il metodo migliore per fare questo prevede di sfocare leggermente l’immagine: semplice quanto efficace. Per dare un tocco estetico alla nostra futura foto, la tecnica di Malin considera un dettaglio geniale: la sfocatura progressiva, senza il moto di inseguimento delle stelle.

Ecco quindi quello che dobbiamo fare:

  • Colleghiamo la nostra reflex al telescopio. Se non sappiamo come fare, siamo nel posto migliore: contattate i tecnici di Teleskop Service Italia che vi consiglieranno gli accessori necessari (sono tutti economici). Il telescopio più adatto, al contrario di quelli usati per fare ottime foto al cielo, è un rifrattore, anche di piccolo diametro e non necessariamente apocromatico. In linea di principio, comunque, tutti gli strumenti vanno bene, compresi obiettivi e teleobiettivi fotografici;
  • Scegliamo un campo ricco di stelle brillanti. In queste serate autunnali le Pleiadi o il doppio ammasso del Perseo sono perfetti, se lavoriamo almeno a 400 mm di focale. Se abbiamo un campo molto largo perché usiamo un teleobiettivo, meglio andare verso la cintura di Orione;
  • Mettiamo a fuoco come se dovessimo scattare una perfetta foto astronomica, aiutandoci con la modalità live view;
  • Impostiamo sensibilità almeno a 400 ISO, modalità di scatto in formato RAW e posa Bulb. Meglio avere un telecomando per controllare l’esposizione della reflex senza doverla toccare. In mancanza di telecomando ci dobbiamo accontentare della posa massima consentita: 30 secondi, e dell’autoscatto;
  • Appena iniziamo lo scatto disattiviamo il moto di inseguimento siderale. Possiamo in ogni caso selezionare la modalità autoscatto, anche con il telecomando della reflex, e avere qualche secondo di tempo per disattivare il moto orario prima che inizi lo scatto. Si può anche provare a fare una variante interessante: 10 secondi di foto con messa a fuoco perfetta e moto orario acceso e poi il resto (sempre in uno scatto singolo) senza inseguimento e con la sfocatura progressiva che stiamo per vedere;
  • Toccando molto leggermente il focheggiatore, mentre la posa va avanti e le stelle si sposteranno, variamo in modo continuo e molto delicato la messa a fuoco, fino al termine dello scatto, compreso tra i 60 e i 120 secondi. Il fuoco non dovrebbe variare moltissimo, ma di quanto ruotare la manopola del focheggiatore lo capiremo dopo il primo tentativo. Ora osserviamo il risultato ed emozioniamoci, perché abbiamo fatto una foto sia artistica che scientifica, molto più didattica di tanti scatti fatti da astrofotografi esperti e purtroppo così pieni di elaborazione da aver perso quasi del tutto il contatto con la realtà.
Gli spettacolari colori delle Pleiadi, catturati con la tecnica descritta nel post attraverso un rifrattore da 106 mm e Canon 450D. Posa singola di circa 90 secondi.

Gli spettacolari colori delle Pleiadi, catturati con la tecnica descritta nel post attraverso un rifrattore da 106 mm e Canon 450D. Posa singola di circa 90 secondi.

 

Cosa accade in pratica quando applichiamo questa tecnica? La non compensazione del moto terrestre produce sul sensore le classiche tracce stellari. La sfocatura progressiva durante l’esposizione trasforma le tracce in tanti piccoli coni, la cui larghezza e lunghezza dipendono dal tempo di esposizione e dall’intensità della sfocatura. In questo modo la nostra immagine contiene molta più dinamica rispetto a una classica posa: le stelle più brillanti mostreranno il colore nella parte terminale del cono, quando la loro luce si sarà distribuita su un numero sufficientemente grande di pixel per evitare la saturazione. Le stelle più deboli avranno coni più brevi ma sempre colorati, soprattutto nella parte iniziale vicina al punto di fuoco.

La fase di elaborazione, spesso temuta e odiata, è semplicissima, anche se abbastanza importante. La saturazione dei colori delle stelle è per natura piuttosto contenuta. A questo però è facile porre rimedio con qualsiasi programma di elaborazione delle immagini. E’ infatti sufficiente aumentare la saturazione del colore di almeno il 50% per far emergere finalmente un campo pieno di evidenti sfumature e affascinanti contrasti. Non è necessario fare altro.

I colori delle stelle e l’estetica dell’immagine risultante dipendono dalla lunghezza e dalla larghezza dei coni stellari, quindi dalla focale di ripresa, dal tempo di esposizione, dall’intensità della sfocatura. Le variabili in gioco sembrano complicare la nostra ripresa, ma questa è una delle rare e piacevoli situazioni nelle quali la pratica è molto più semplice di qualsiasi spiegazione.

Qualcuno riconosce il campo inquadrato? La scala è la stessa della fotografia delle Pleiadi, solo che in questo caso ci sono molti più colori: è un vero spettacolo!

Qualcuno riconosce il campo inquadrato? La scala è la stessa della fotografia delle Pleiadi, solo che in questo caso ci sono molti più colori: è un vero spettacolo!

Il consiglio principale, quindi, è quello di fare esperienza e dare sfogo alla vostra fantasia. Sono sufficienti pochi minuti ed un paio di tentativi per trovare già il giusto compromesso che soddisfa il vostro gusto estetico. E, chissà, proprio come accade in altri ambiti della società, i nostri scatti creativi potrebbero riportare di moda questa tecnica, che molti nativi digitali, purtroppo, neanche conoscono. Eppure è utile, divertente e piuttosto artistica. A questo punto, allora, osservando i nostri capolavori un paio di domande sono obbligatorie: a quali temperature corrispondono i colori che stiamo osservando? Sono più calde le stelle rosse o blu? E di quanto? Scopriamolo da soli con enorme soddisfazione: è il bello dell’astronomia amatoriale!

satelliti_giove_giorno

Come osservare e fotografare pianeti e stelle di giorno

L’astronomia amatoriale è una disciplina affascinante, che ci permette di organizzare viaggi indimenticabili pur rimanendo ben saldi a terra. Possiamo scegliere di scorrazzare tra i pianeti, disegnare i crateri della Luna, oppure possiamo cercare di fare foto o addirittura attività di ricerca che di solito conducono gli astronomi professionisti. Insomma, tra tutte le scienze, e probabilmente tra molte altre attività che potremo mai fare, l’astronomia rappresenta l’emblema della libertà più assoluta, anche perché abbiamo a disposizione miliardi di anni luce di Universo da percorrere a una velocità ben superiore a quella della luce, muovendo semplicemente il nostro telescopio.

L’astronomia pratica, tuttavia, ha un grosso problema, banale quanto fastidioso, soprattutto nelle fredde serate invernali: può essere fatta solo di notte. Di giorno, con l’ingombrante presenza del Sole, possiamo sperare di osservare e fotografare solo lui, il nostro enorme faro cosmico, con strumenti e accorgimenti particolari: un po’ poco, soprattutto conoscendo la bellezza e la vastità che presenti oltre la sua accecante luce. La domanda, allora, può venir spontanea, sebbene in apparenza ingenua: possiamo fare osservazioni e fotografie anche di giorno? Certo: possiamo osservare con un radiotelescopio potente, che non teme neanche le nuvole, oppure inviare nello spazio il nostro setup a far concorrenza al telescopio spaziale Hubble e il problema sarebbe risolto. Facile, no?

In realtà, senza scomodare accorgimenti che oggi suonano come pura fantascienza, si può fare un po’ di astronomia anche di giorno, al di là del Sole. Se la nostra passione sono i pianeti, le foto in alta risoluzione o semplicemente avere nuove sfide da vincere, l’astronomia di giorno diventa un’importante risorsa che potrà farci divertire e ottenere ottimi risultati.

Per convincervi che la mia precedente frase non è il classico delirio che si presenta prima o poi a ogni astrofilo che deve sopportare un interminabile periodo di meteo indecente, cominciamo a chiederci: cos’è che impedisce di vedere le stelle di giorno?La risposta è istintiva: il Sole! Ma siamo sicuri? Perché tutti i telescopi spaziali possono osservare il cielo anche con il Sole sopra l’orizzonte? La luce solare è una condizione necessaria ma non sufficiente a nascondere le stelle di giorno, tanto che nello spazio il cielo appare nero come la pece e si possono vedere le stelle anche con il Sole. La responsabile ultima è la nostra atmosfera: l’aria che respiriamo non è perfettamente trasparente ma intercetta una piccola parte della luce solare e la riflette poi in ogni direzione. Questo fenomeno, conosciuto come diffusione, è il responsabile del nostro cielo chiaro di giorno: le stelle non si vedono a causa dell’enorme inquinamento luminoso prodotto dal Sole, che viene diffuso dalla nostra atmosfera e rende il cielo molto brillante.

Ora possiamo fare un altro passo allora, chiedendoci: c’è modo, restando qui sulla Terra, e senza usare un radiotelescopio, di osservare il cielo di giorno? La risposta è sì, ma in realtà la domanda non è ancora necessaria, perché ci sono già alcuni corpi celesti che possiamo osservare di giorno, anche se a occhio nudo crediamo di non vederli. Prima però, proprio come in un film, mi piace creare un po’ di suspance andando a indagare meglio le ragioni per cui dovremo tirare fuori il telescopio anche di giorno (per la felicità di mogli, compagne, figli e datori di lavoro).

 

Perché fare foto di giorno

In realtà fare osservazioni di giorno, al di là del Sole, ha molti risvolti interessanti, che voglio riassumere in pochi e sintetici punti, per andare poi al nocciolo della questione:

  • Per sfida personale;
  • Per il gusto di trovare oggetti che erroneamente reputavamo invisibili con la luce del giorno;
  • Perché non abbiamo tempo di notte, o fuori fa freddo quando non c’è il Sole;
  • Perché alcuni soggetti danno il meglio di sé, sia in fotografia che in osservazione, di giorno. Mercurio e Venere si osservano e fotografano molto meglio quando sono alti sull’orizzonte rispetto al crepuscolo. La Luna in fase ridotta, che mostra regioni spettacolari come il Mare Crisium, si può osservare e fotografare con soddisfazione solo quando è a poche decine di gradi dal Sole, quindi di giorno, se non vogliamo essere distrutti dalla turbolenza atmosferica alle basse altezze sull’orizzonte, come accade anche per Mercurio e Venere;
  • Alcuni fenomeni, come occultazioni, congiunzioni, eclissi dei satelliti di Giove, non sempre capitano di notte: vogliamo farci fermare allora da un po’ di luce solare?
  • Chi monitora i pianeti ha necessità di riprenderli e/o osservarli per più tempo possibile, quindi anche di giorno, soprattutto quando la loro separazione è inferiore ai 40° dalla nostra Stella. In queste condizioni, inoltre, i professionisti non possono osservare e molti amatori si dirigono verso altri soggetti. E’ proprio qui che la probabilità di scoprire qualche fenomeno particolare aumenta di molto: una nuova tempesta di sabbia su Marte, una mega tempesta su Saturno, una gigantesca nube di ammoniaca che fa sparire un’intera banda equatoriale di Giove… Sappiamo infatti che la legge di Murphy è impietosa: se qualcosa di spettacolare deve succedere nel cielo, lo farà di certo di giorno. E noi, allora, la aggiriamo osservando anche quando nessuno pensa che si possa fare!
  • Sempre per la legge di Murphy, se una grande cometa, con una magnitudine di -7. si rendesse visibile a 15-20 gradi dall’orizzonte e in una posizione dell’eclittica che rendesse impossibile osservarla dal nostro emisfero (in pratica tutte le grandi comete degli ultimi 19 anni!) l’alternativa sarebbe volare in Australia o fare fotografie di giorno. E noi le faremo (anche se un viaggio in Australia è senza dubbio più interessante)!

Insomma, oltre al lato ludico/personale c’è un’oggettiva prospettiva scientifica, che interessa di sicuro gli osservatori e gli astroimager più esperti: osservare di giorno, visto che la nostra tecnologia lo consente, è di certo qualcosa da provare prima o poi, anche se con le dovute precauzioni.

Perché osservare e fotografare di giorno? Ecco un motivo: occultazione Luna-Venere del 16 giugno 2007 alle ore 15 locali. Se avessimo aspettato il calar del Sole ce la saremmo persa!

Perché osservare e fotografare di giorno? Ecco un motivo: occultazione Luna-Venere del 16 giugno 2007 alle ore 15 locali. Se avessimo aspettato il calar del Sole ce la saremmo persa!

 

Luna e Venere, sempre presenti a occhio nudo

A molti sarà di sicuro già capitato di osservare la Luna a occhio nudo, anche di giorno, senza particolari difficoltà. In effetti il nostro satellite si può vedere fino a poche decine di gradi di distanza dal Sole. Osservato al telescopio, soprattutto nelle giornate molto limpide, si mostra già interessante e ricco di particolari.

C’è però un altro corpo celeste che è visibile senza ausilio ottico, in pieno giorno: Venere. Il fatto che non l’abbiamo mai visto non è un indicatore affidabile sulla sua reale osservabilità. Con una magnitudine media di circa -4.5, in effetti, Venere è l’unico oggetto di apparenza stellare che può essere visto a occhio nudo di giorno, a patto che sia ad almeno 20° di distanza dal Sole. Un cielo limpido, che si mostra con una marcata tonalità azzurra, aiuta molto nell’impresa di scovare il pianeta a occhio nudo, ma in realtà la parte più difficile dell’impresa coinvolge il nostro sistema di interpretazione delle immagini, ovvero il cervello. Trovare un punto luminoso su uno sfondo brillante e circa uniforme è un’operazione che il nostro occhio, a livello ottico, è perfettamente in grado di fare, ma il nostro computer biologico fatica a elaborare nella maniera corretta i dati. Il risultato è spesso sorprendente: se non sappiamo bene dove guardare potremmo cercare il pianeta di giorno per ore senza vederlo. Se invece sappiamo dove dirigere il nostro sguardo, con un errore di circa 1-2° al massimo, allora il pianeta diventa evidente perché è sempre piuttosto contrastato rispetto al fondo cielo. All’improvviso, dopo tanto cercare, ci apparirà in quella spessa coperta azzurra un piccolo buco da cui filtra la luce puntiforme del pianeta a noi più vicino:“Come ho fatto a non vederlo prima?” E’ sempre questa la domanda che ci si pone con estrema sorpresa e molta soddisfazione per aver visto una “stella” nel cielo illuminato dal Sole. Per identificarlo con meno difficoltà è sempre opportuno nascondere il Sole dietro un ostacolo naturale o artificiale (una collina, degli alberi, una casa…) e scandagliare bene la zona di cielo in cui dovrebbe trovarsi (aiutiamoci con un software planetario).

Venere di giorno si può rintracciare con facilità anche a occhio nudo, se sappiamo bene dove guardare. Riuscite a trovarlo in questa foto scattata con un cellulare?

Venere di giorno si può rintracciare con facilità anche a occhio nudo, se sappiamo bene dove guardare. Riuscite a trovarlo in questa foto scattata con un cellulare?

Al telescopio, Venere, osservato di giorno, dà il meglio di sé, per due motivi:

  • Possiamo ammirarlo quando è molto alto sull’orizzonte, senza aspettare il tramonto o l’alba, quindi, se abbiamo l’accortezza di nascondere il Sole dietro un ostacolo naturale ed evitare che scaldi il tubo ottico, la turbolenza sarà sempre minore e la visione più dettagliata;
  • Il pianeta è molto luminoso. Se lo puntiamo con il cielo già scuro del crepuscolo, la sua luminosità inganna l’esposimetro del nostro sistema visivo, che ce lo mostrerà sempre troppo brillante, come se fosse una fotografia “bruciata”. Il risultato? Perdita di ogni tipo di dettaglio e un certo fastidio nella visione. Di giorno, invece, grazie al contrasto molto più basso tra il fondo cielo e Venere, il cervello applica la giusta esposizione e il pianeta non è mai sovraesposto. L’osservazione è molto più rilassante e spettacolare, perché potremo scorgere con relativa facilità alcune sfumature nella spessa atmosfera venusiana, anche senza l’uso di filtri colorati o grossi strumenti. Personalmente tutte le migliori osservazioni e fotografie di Venere le ho fatte di giorno, tra le 12 e le 16 locali.
Venere mostra molti dettagli, sia in visuale che, soprattutto, in fotografia. Il segreto? Osservare di giorno, quando il pianeta è alto nel cielo.

Venere mostra molti dettagli, sia in visuale che, soprattutto, in fotografia. Il segreto? Osservare di giorno, quando il pianeta è alto nel cielo.

 

Mercurio e oltre: a volte meglio di giorno, ma solo per i più esperti

Quanto scriverò da questo punto in poi prevede delle operazioni delicate, soprattutto per il puntamento, che devono essere fatte solo da persone ormai esperte di osservazioni e fotografia. La tecnica, infatti, spesso implica di fare un salto prima sul Sole, con tutti i rischi che ne conseguono se non si usa un filtro solare e molta attenzione. Leggere quindi bene quanto segue, se vogliamo proseguire con il nostro tour del cielo diurno.

 

Purtroppo a occhio nudo il gioco è già finito: il giro turistico del Cosmo termina con l’emozione e la sfida di trovare Venere, ma con un telescopio possiamo esplorare l’invisibile e fare altre spettacolari osservazioni.

Le particolari condizioni in cui si presenta Venere, ovvero un pianeta che non si allontana mai dal Sole per più di poche decine di gradi, sono ancora più esasperate per Mercurio. Per il più piccolo pianeta del Sistema Solare non abbiamo molta scelta: le osservazioni di giorno sono le UNICHE che danno qualche soddisfazione. E’ inutile cercare di fare i testardi e aspettare anni per trovare un buon seeing e trasparenza all’alba o al tramonto, con il Sole sotto l’orizzonte e il pianeta ben visibile a occhio nudo: non avremo mai una visione nitida come di giorno. Questo vale ancora di più se l’obiettivo è fare foto.

Mercurio di giorno mostra tenui chiaroscuri che non vedremo mai al crepuscolo

Mercurio di giorno mostra tenui chiaroscuri che non vedremo mai al crepuscolo

Più facile e spettacolare di Mercurio, Marte è un altro soggetto ghiotto per fare osservazioni. Quando la sua separazione è maggiore di 60° dal Sole, il pianeta rosso ha ancora una discreta luminosità e diametro angolare per mostrare dettagli. Grazie alla sua colorazione rossastra, che contrasta in modo netto con l’azzurro del cielo, marte_giornol’osservazione di Marte di giorno può essere spettacolare, soprattutto quando il Sole si sta avviando verso il tramonto (o poco dopo l’alba). In un certo senso, per chi non è abituato a osservare i pianeti, l’esperienza diurna migliora la visione perché diminuisce i contrasti e impedisce, proprio come accade per Venere, di avere un’immagine troppo luminosa, quindi sovraesposta e povera di particolari. Il rapido tempo di esposizione del nostro occhio, inoltre, ha anche il potere di congelare il seeing molto meglio rispetto a quanto accade di notte, con la visione notturna e un tempo di esposizione che viene incrementato automaticamente dal nostro cervello. In un certo senso ed entro determinati limiti, di giorno la visione migliora anche a seguito di questo fenomeno, lo stesso per cui gli astroimager planetari tendono a fare esposizioni più brevi possibili per congelare il seeing.

Con Giove iniziamo invece ad avere qualche difficoltà. Visibile solo oltre i 45° di elongazione, si presenta spesso come un disco quasi trasparente, ma ricco comunque di contrasti, anche se non riusciremo a vedere i più minuti dettagli della sua atmosfera. Meglio non esagerare con gli ingrandimenti, almeno all’inizio, per non perderlo tra la luce del cielo.

Per Saturno, invece, le cose cambiano e trovarlo rappresenta quasi una sfida, che è facile da vincere con il pianeta oltre i 60° di separazione dal Sole, un cielo molto trasparente e la nostra stella prossima all’orizzonte. Anche in questo caso meglio iniziare con ingrandimenti modesti per trovarlo: circa 50-100X al massimo e poi, se serve, aumentarli (di poco).

Urano e, ancora peggio, Nettuno, dovrebbero essere off limits, ma non si sa mai: con un cielo limpido di montagna, una separazione di almeno 90°, un filtro polarizzatore e un buon occhio, potremo riuscire a scorgere Urano: nessuna speranza, invece, per Nettuno.

Se vogliamo andare oltre i pianeti, possiamo fare un bel tour delle stelle brillanti: snobbate di notte perché poco interessanti (a ragione), di giorno diventano delle gemme da scovare in un mare d’azzurro, come un prezioso tesoro. Ecco allora che non avremo alcun problema nel puntare Sirio, Capella, Altair, Deneb, Vega, Betelgeuse, Antares e Aldebaran. Unica richiesta: cielo terso e almeno 45° di separazione dal Sole!

Le stelle si possono vedere anche di giorno! Ma è in fotografia che le cose migliorano e anche di molto

Le stelle si possono vedere anche di giorno! Ma è in fotografia che le cose migliorano e anche di molto

 

Come puntare di giorno

Prima di uscire con il Sole alto e cominciare a osservare stelle e pianeti, è meglio dare qualche consiglio utile per fare una cosa che di notte è semplice, ma di giorno un po’ meno: a parte la Luna e Venere, nessun altro oggetto si vede a occhio nudo, spesso nemmeno con un piccolo cercatore, quindi: come facciamo a puntare qualcosa che non possiamo vedere finché non è nel campo dell’oculare? Si potrebbe dire: con il puntamento automatico! La risposta è sì, ma con qualche differenza rispetto alla notte. Di giorno, infatti, non possiamo fare l’allineamento della montatura, perché le stelle non si vedono: come fare?

Semplice: dobbiamo connettere la nostra montatura al computer, bypassando la pulsantiera e interfacciandola con un software planetario, come Cartes du ciel. Grazie ai driver Ascom, questa soluzione è abbastanza semplice e molti fotografi già la usano per curare le sessioni di ripresa notturna. Controllando la montatura con il planetario possiamo fare una cosa che molte pulsantiere non permettono: puntare un oggetto celeste ben visibile, sincronizzarla sulle sue coordinate e poi spostarci nella direzione in cui vogliamo osservare l’invisibile.

L’unico oggetto celeste sempre presente, a parte qualche volta la Luna, è il Sole ma è anche il più pericoloso. Per puntare tutti gli altri corpi celesti di giorno occorre quindi quasi sempre sincronizzare la nostra montatura sul Sole, puntandolo a mano. Come ben sappiamo, è assolutamente fondamentale evitare che la luce del Sole entri senza essere filtrata nel telescopio e nel cercatore. Quindi, il primo passo da fare è preparare il setup come se dovessimo osservare il Sole: coprire il cercatore e inserire di fronte l’obiettivo del telescopio un filtro solare sicuro, come l’Astrosolar. Puntiamo la nostra stella con il metodo dell’ombra, poi centriamola osservando dall’oculare (con il telescopio che ha il filtro solare ben saldo e sicuro!). Sincronizziamo la montatura e poi diciamo al planetario (o alla pulsantiera, se lo permette) di andare dove vogliamo: Mercurio, Venere, Marte, qualche stella… È importante scegliere soggetti distanti almeno 15 gradi dal chiarore solare per evitare che parte della sua luce entri nello strumento (e per vedere qualcosa!). Una volta che il telescopio si è spostato verso la destinazione, possiamo togliere il filtro solare e scoprire il cercatore. Con una buona vista e un cercatore da almeno 50 mm di diametro, quasi tutti i soggetti (tranne Saturno) dovrebbero essere visibili attraverso le sue lenti, una cosa molto comoda per poter effettuare un preciso centraggio.

Il successo del puntamento dipende in modo critico dal perfetto stazionamento della montatura equatoriale (non confondete lo stazionamento con l’allineamento del GOTO!), che può essere fatto solo di notte. Ecco quindi che sarebbe meglio lasciare il telescopio montato dalla sera prima e pronto anche al nostro tour diurno.

Se vogliamo spostarci verso oggetti molto distanti è meglio andare per piccoli passi: puntiamo prima un corpo celeste luminoso, come Venere, per sincronizzare di nuovo la montatura e poi spostiamoci verso la destinazione: meglio non fare spostamenti superiori a 40 gradi perché il puntamento non sarà mai precisissimo.

Una cosa fondamentale riguarda poi la messa a fuoco: di giorno, anche per oggetti luminosi come Venere, se il telescopio non è già vicino al punto di fuoco potremo non vedere la sagoma sfocata del pianeta, anche se questo è al centro del campo: assicuriamoci quindi di aver fatto una buona messa a fuoco prima sul Sole e di non cambiare oculare, altrimenti dovremo armarci di pazienza e muovere il fuoco fino a trovare l’oggetto, che sarà visibile solo quando saremo quasi al punto di fuoco. Una cosa simile si deve fare se vogliamo fare foto: facciamo il fuoco prima sul Sole e a una focale non troppo elevata (meglio al fuoco diretto), così saremo sicuri che se il corpo celeste verrà puntato lo vedremo.

 

Qualche consiglio per le riprese fotografiche

Se vogliamo usare il nostro occhio per osservare, dobbiamo accontentarci di scegliere solo le giornate con il cielo più terso, in modo che i contrasti aumentino al punto da garantire osservazioni molto piacevoli, se non migliori rispetto alla notte. Se invece siamo interessati a fare riprese in alta risoluzione, e in generale a capire quanto in profondità si può vedere anche con il Sole sopra l’orizzonte, allora le cose cambiano molto e potremo restare sorpresi di quanto sia possibile fare. Per capire il trucco che c’è alla base di proficue riprese (non più osservazioni ma fotografie!) diurne, dobbiamo riproporre una domanda alla quale non ho ancora dato risposta: c’è modo, restando qui sulla Terra, e senza usare un radiotelescopio, di osservare il cielo di giorno? Fino a questo momento abbiamo visto che non serve nulla per osservare i principali pianeti, né le stelle, perché anche se non li vediamo in modo spettacolare come di notte, questi in realtà ci sono e si possono osservare al telescopio, se non addirittura a occhio nudo. Tuttavia, grazie alla grande sensibilità dei sensori digitali, possiamo davvero fare qualcosa per migliorare di molto la situazione in fotografia.

La risposta alla domanda ne prevede allora un’altra: di che colore è il cielo di giorno? Se non abitiamo in pianura Padana, la risposta non ammette eccezioni: azzurro! Cosa vuol dire, a livello più fisico, questo? Che l’aria che respiriamo preferisce diffondere in ogni direzione più la luce azzurra rispetto a quella rossa, visto che quella solare è in realtà bianca e così sarebbe dovuto apparire il cielo se tutti i colori fossero stati diffusi allo stesso modo.

Senza entrare in profonde spiegazioni fisiche, il principio alla base della diffusione della luce da parte di molecole di gas è descritto da un processo chiamato diffusione di Rayleigh. Per i nostri scopi ci basta solo un dato, che è la conferma quantitativa della nostra semplice osservazione sul colore del cielo: la percentuale di luce diffusa è inversamente proporzionale alla quarta potenza della lunghezza d’onda. In parole semplici, all’aumentare della lunghezza d’onda della luce diminuisce drasticamente la percentuale che viene diffusa dall’aria. Ecco quindi che la luce blu viene diffusa circa 16 volte più di quella del vicino infrarosso, che ha una lunghezza d’onda circa doppia e perché per le onde radio giorno o notte non fa alcuna differenza.

La diffusione di Rayleigh in funzione della lunghezza d'onda spiega perché il cielo è azzurro e rappresenta un'interessante scappatoia per fare ottime fotografie diurne.

La diffusione di Rayleigh in funzione della lunghezza d’onda spiega perché il cielo è azzurro e rappresenta un’interessante scappatoia per fare ottime fotografie diurne.

Eureka! Abbiamo trovato il modo per fare fotografie di giorno di soggetti brillanti, come se il Sole quasi non ci fosse: basta usare un filtro passa infrarosso. Più grande è la lunghezza d’onda utilizzata, maggiore sarà il contrasto tra il fondo cielo e il corpo celeste. Volete una prova? Guardate la seguente immagine che ritrae Giove ripreso allo stesso orario con diversi filtri:

All'aumentare della lunghezza d'onda diminuisce la luminosità del fondo cielo e i corpi celesti, come in questo caso Giove, emergono in modo sempre più netto.

All’aumentare della lunghezza d’onda diminuisce la luminosità del fondo cielo e i corpi celesti, come in questo caso Giove, emergono in modo sempre più netto.

Per poter sfruttare questo trucco ci serve un sensore monocromatico, o al limite una reflex full spectrum, ovvero modificata per renderla sensibile anche all’infrarosso. Questi dispositivi sono sensibili, sia pur in forma ridotta, fino a circa 1100 nm, una regione molto interessante per i nostri scopi. Ottime sono le camere planetarie monocromatiche, spesso usate anche per l’autoguida, come la sempre verde ASI 120MM. Con questi sensori possiamo usare filtri passa infrarosso da 800 e persino 1000 nm (1 micron). In questa zona poco esplorata del vicino infrarosso, il cielo diventa talmente scuro che non solo possiamo fare fotografie alla Luna, Venere, Mercurio, Marte, Giove e Saturno come se fosse notte, ma è addirittura possibile riprendere corpi celesti che nessuno si sarebbe aspettato: i quattro principali satelliti di Giove, ad esempio, tutte le stelle brillanti fino a magnitudine 5-6 e persino oggetti spettacolari come brillanti comete.

Ecco allora che in questo modo, anche con strumenti modesti, a partire da 8-10 centimetri, il cielo diurno mostra tutto ciò che ai nostri occhi apparirebbe ben visibile di notte: fantastico, vero?

satelliti_giove_giorno

In conclusione di un post piuttosto lungo, non mi resta che lanciare un paio di sfide: qual è il corpo celeste più debole che è possibile osservare o fotografare con il Sole sopra l’orizzonte? È possibile ottenere un’immagine di un soggetto deep sky brillante, ad esempio le Pleiadi, o la nebulosa di Orione, di giorno? Per queste imprese i miei consigli sono semplici: 1) Cielo terso come mai si vede dalla pianura; 2) oggetto alto sull’orizzonte almeno 30° e più lontano possibile dal Sole, 3) Sole in prossimità del tramonto o dell’alba.

Riprese diurne estreme: la cometa McNaught del gennaio 2007 a 15 ° dal Sole e con una magnitudine di circa -7, ripresa con un telescopio da 25 cm diaframmato a 3 cm e filtro IR da 1000 nm. D'ora in poi non ci perderemo più un raro evento astronomico solo perché si verifica di giorno, alla faccia della legge di Murphy!

Riprese diurne estreme: la cometa McNaught del gennaio 2007 a 15 ° dal Sole e con una magnitudine di circa -7, ripresa con un telescopio da 25 cm diaframmato a 5 cm e filtro IR da 1000 nm. D’ora in poi non ci perderemo più un raro evento astronomico solo perché si verifica di giorno, alla faccia della legge di Murphy!

 

Per il momento i corpi celesti più deboli che ho ripreso sono i satelliti di Giove, che hanno luminosità inferiori a quella delle stelle principali delle Pleiadi o del cuore della nebulosa di Orione: questi due, quindi, sono soggetti ben alla portata della nostra voglia di astronomia anche di giorno. La caccia è aperta!

 

P.S. Non vale scattare foto deep sky durante un’eclisse totale di Sole!

C'è davvero bisogno di descrivere a parole la bellezza dell'aurora?

Come, dove e quando ammirare le magnifiche aurore boreali

Da Settembre a inizio Aprile di ogni anno, per una nicchia di osservatori dell’emisfero boreale che vivono nei pressi del circolo polare artico, si apre la stagione più bella dell’anno, quella delle aurore boreali. Mentre alle medie latitudini dobbiamo fare i conti con la stagione delle piogge per antonomasia, l’autunno e l’inizio della primavera, o con le nebbie dell’inverno, c’è una parte del mondo e una crescente schiera di appassionati di cielo e Natura che attendono con ansia il periodo migliore per fare l’esperienza naturalistica più bella della propria vita. Questo post rappresenta una piccola guida per tutti coloro che almeno una volta nella vita vorranno ammirare lo spettacolo più bello e impressionante che potremo mai vedere su questo piccolo pianeta azzurro.

 

Cosa sono le aurore secondo la scienza

A livello prettamente fisico, le aurore polari sono delle chiazze di luce, tipicamente verde, che si mostrano nei cieli notturni a latitudini molto settentrionali (aurore boreali) o meridionali (aurore australi), estremamente variabili in forme, colori e intensità e che a volte possono diventare più luminose della Luna piena e muoversi con una rapidità pari a quella di un fulmine.

Alla base di questo particolare fenomeno ci sono due ingredienti: il Sole e il campo magnetico terrestre. Senza entrare in nozioni troppo tecniche, le aurore si producono quando le particelle cariche espulse dal Sole e chiamate vento solare vengono incanalate verso le regioni polari dalle linee del campo magnetico terrestre e arrivano a impattare con gli strati più alti della nostra atmosfera. Ogni volta che una particella di vento solare, che viaggia a diverse centinaia di chilometri al secondo(!), collide con un atomo o una molecola che compone la nostra aria (tipicamente ossigeno e azoto) strappa degli elettroni e ionizza l’atomo colpito. Circa un miliardesimo di secondo più tardi l’atomo riacquista l’elettrone perso e questa transizione fa emettere luce. Le aurore polari sono quindi il modo in cui gli atomi cercano di tornare al loro stato iniziale dopo essere stati letteralmente sconvolti da collisioni violentissime. Ma mai una ferita causata da una collisione a centinaia di migliaia di chilometri l’ora si manifesta con uno spettacolo tanto sublime. Sì, perché al di là della sterile spiegazione fisica, le aurore sono uno spettacolo che deve essere visto, anche se non si conosce la teoria di fondo; deve essere contemplato in rigoroso silenzio e mostrando un doveroso rispetto per la magnificenza della Natura, che si rivela a noi con un’eleganza senza eguali spesso proprio in risposta a eventi dall’enorme violenza.

Dinamica per la formazione delle aurore: alcune particelle cariche provenienti dal Sole riescono a penetrare il campo magnetico terrestre nei pressi dei poli e dallo scontro con le molecole d'aria si innescano le aurore.

Dinamica per la formazione delle aurore: alcune particelle cariche provenienti dal Sole riescono a penetrare il campo magnetico terrestre nei pressi dei poli e dallo scontro con le molecole d’aria si innescano le aurore.

 

Cosa sono le aurore, secondo la nostra vista

Ecco allora che esiste un’altra spiegazione alla domanda “Cosa sono le aurore?” che trascende qualsiasi razionalità, qualsiasi oggettività e lascia libero sfogo alle emozioni e alle descrizioni di chi quel fiume di luce irrequieto nel cielo l’ha visto con i propri occhi e l’ha subito con tutto sé stesso.

In una normale serata nel circolo polare artico si potrà sempre osservare un debole arco verdastro, simile a una striscia di foschia o a una nuvola illuminata dai lampioni, come è comune osservare dalle nostre inquinate città. “E’ quella lì l’aurora? Una striscia lattiginosa che somiglia alla Via lattea estiva o al cielo di Milano quando sta per arrivare la nebbia? E i colori delle foto non ci sono?” Sono queste le domande che ho sentito da chi si è spinto fin lassù, in Islanda o in Lapponia, e non è stato particolarmente fortunato. Togliendo il punto interrogativo, invece, si trasformano in affermazioni spesso dette da chi le aurore, quelle vere, non le ha mai viste e, forse, non si è mai spostato oltre i 60° di latitudine nord.

Le aurore, infatti, possono essere lievi e potenti, appena accennate o illuminare il paesaggio circostante, sembrare statiche o muoversi con la violenza di un fiume in piena. Tutto dipende dal Sole e, in parte, anche dalla Terra. Le aurore possono spingersi fino a latitudini medie, a Londra o Parigi, persino in Italia (l’ultima aurora italiana risale al 2003) ma sono solo una blanda copia di quello che si vedrebbe nella giusta località, lì nel grande nord.

Ecco allora che durante i momenti di maggiore attività, quando si verificano delle tempeste geomagnetiche, l’aurora diventa più spettacolare di qualsiasi fotografia, perché uno scatto statico non può catturare il movimento rapidissimo di strutture di luce che si espandono su tutto il cielo e che mostrano dettagli fini impossibili da immortalare in una fotografia esposta per qualche secondo. Nei momenti in cui l’attività è almeno moderata le aurore diventano uno spettacolo che non si può dimenticare, che sovrasta qualsiasi altra cosa vista fino a quel momento, in grado di proiettare senza problemi ombre in terra o di rendersi visibili quando ancora c’è la luce del tramonto. Immaginate una tavola bianca sulla quale far scorrere in modo casuale e caotico tre grossi pennelli imbevuti di colore fino a gocciolare: verde, giallo, rosso, e tutte le sfumature che si formano quando quelle strisciate si incontrano, si sovrappongono, si fondono insieme creando mulinelli di colore che all’improvviso sembrano aprirsi come un ombrello e cadere come pioggia su di noi. Non c’è ombrello che possa ripararci da tanta bellezza, né, per fortuna, alcun timore che giustifichi una fuga al riparo. Non c’è pericolo, se non quello di esporre i nostri occhi a una bellezza che in pochi riescono ad assimilare senza emozionarsi, senza far scendere una lacrima, senza gridare di gioia al cielo e abbracciare a caso tutte quelle sconosciute persone che impavide si sono ritrovate a osservare insieme lo stesso fenomeno. In un momento, quando lo decide il cielo a suo insindacabile giudizio, tutto cambia, tutto si accende. Il freddo scompare, il tempo si ferma, il cuore inizia a far rumore e niente sarà più lo stesso. Un secondo o dieci, un’ora o 5 minuti: nessuno sa quanto durerà ma basterà comunque a impressionare quell’immagine sin nella parte più profonda della nostra anima, per sempre. Altro che fotografia: le aurore, quelle vere, sono molto più belle, evidenti e spettacolari se ammirate a occhio nudo!

C'è davvero bisogno di descrivere a parole la bellezza dell'aurora?

C’è davvero bisogno di descrivere a parole la bellezza dell’aurora? Per capire quanto è brillante, questa foto  stata fatta al tramonto. In primo piano Venere, in alto a sinistra le Pleiadi.

 

Dove, quando e quanto tempo?

Il dove è semplice: la massima frequenza (e spettacolarità) di attività aurorale si verifica proprio a cavallo del circolo polare artico. Per noi europei ci sono solo due possibilità: la parte settentrionale della Scandinavia o l’Islanda, entrambi dei luoghi incantevoli anche a livello paesaggistico. Se cerchiamo la vacanza della vita allora bisogna andare in Islanda, girarsi l’isola a bordo di un’auto e allontanarsi dalla capitale se si vuole vedere per bene l’aurora. Durata consigliata: da 10 giorni in su.

Per un’esperienza meno impegnativa dal punto di vista temporale ed economico, la regione della Lapponia attorno al parco nazionale di Abisko è perfetta e gode a detta di molti delle condizioni meteo più favorevoli dell’intero nord. In questa, che è la zona meno abitata dell’Europa, ci sono pochi hotel, ma tutti sono attrezzati per l’osservazione delle aurore (e molti hanno anche splendide piste da sci, per gli amanti), con ampi piazzali bui, baite con vetrate e riscaldate, e visite guidate (molto costose però!). In effetti posso confermare che il microclima attorno ad Abisko è unico e assicura molte più nottate serene dell’Islanda o dell’alternativa più economica di tutte: Tromsø. Questa cittadina è situata sulla costa norvegese ed è immersa nei tipici fiordi che caratterizzano questa terra. Sebbene in linea d’aria disti poche centinaia di chilometri dall’entroterra lappone, gode di un clima molto diverso: il freddo non è mai eccessivo perché risente della corrente del golfo, ma in compenso il meteo è in media molto più brutto e instabile dell’entroterra. Può capitare anche una settimana di cielo totalmente coperto: e che ce ne facciamo di temperature più clementi se poi l’aurora non la possiamo vedere? In ogni caso questa è la meta più economica: a titolo di esempio, un viaggio di 3 notti e 4 giorni compreso di volo, hotel, abbigliamento termico e automobile a noleggio può costare circa 500 euro a persona a Tromsø e fino al doppio ad Abisko. Per l’Islanda i prezzi sono ancora più alti.

Percentuale di notti in cui si vede l'aurora: né troppo a nord, né troppo a sud. In Islanda e nella parte settentrionale della Scandinavia l'aurora, anche minima, c'è sempre.

Percentuale di notti in cui si vede l’aurora: né troppo a nord, né troppo a sud. In Islanda e nella parte settentrionale della Scandinavia l’aurora, anche minima, c’è sempre.

 

Per il quando, invece, le cose si complicano un po’.

Le tempeste magnetiche e i momenti in cui le aurore sono più intense si possono provare a prevedere con al massimo 2-3 giorni di preavviso, quindi a meno di non essere degli avventurieri disposti a prenotazioni last minute, dobbiamo arrenderci all’idea che in questo tipo di viaggio serva anche un po’ di fortuna. Può succedere che in una settimana non si riesca a vedere quasi mai un’aurora decente e poi questa esploda il giorno che siamo tornati a casa (o il giorno prima di arrivare.. Una triste storia vera). Oltre a programmare un soggiorno più lungo di un paio di notti, ci sono degli accorgimenti che potrebbero migliorare le nostre possibilità.

L’attore principale di questa opera teatrale ricca di meravigliosi e improvvisi colpi di scena è il Sole, con la sua attività. Ci sono due principali meccanismi con cui si possono innescare spettacolari aurore e il più importante è causato dai CME, espulsioni di massa coronale, e dai brillamenti; entrambi sono fenomeni generati dalle grandi macchie solari. Non si possono prevedere ma è indubbio che più macchie ci sono sul Sole e maggiore è la possibilità che qualche particella in più venga scagliata nello spazio e arrivi fino alla Terra. Ragionando quindi sul lungo periodo, i momenti in cui le aurore sono più intense sono a cavallo dei massimi di attività del Sole. La notizia brutta è che il massimo solare è passato nel 2012-2013 e ora siamo diretti verso un minimo dell’attività. Le grandi aurore sono quindi più rare perché a reggere la baracca c’è in pratica solo il secondo, e più debole, meccanismo: i buchi coronali. Si tratta di veri e propri buchi nell’atmosfera del Sole (corona solare) dovuti alla debolezza locale del campo magnetico solare. In questo modo le particelle di vento solare che partono dalla superficie non vengono intrappolate o deviate dalla corona in modo efficiente e possono raggiungere la Terra in maggiori quantità, scatenando tempeste magnetiche anche con un Sole privo di macchie, quindi senza il motore principale che alimenta il fenomeno. Per ritrovare aurore molto brillanti per gran parte del tempo, quindi andare quasi a colpo sicuro, bisogna aspettare il prossimo massimo solare, previsto per il 2023-2024. Se non siamo così pazienti e accettiamo il rischio di non riuscire a vedere una tempesta ma ci accontentiamo di una modesta attività aurorale (sempre presente), allora tutti gli anni sono buoni, anche se ci sono periodi più favorevoli di altri.

Sembra una banalità ma meglio chiarire anche questo aspetto per chi magari non è proprio esperto del grande nord: di sicuro dobbiamo andare quando esiste la notte astronomica, escludendo i mesi da aprile ad agosto, in cui la luce solare non abbandona mai la scena e vedere l’aurora è impossibile. I momenti migliori, sia dal punto di vista climatico che dell’attività, si verificano a cavallo degli equinozi, quindi seconda metà di settembre o seconda metà di marzo. Si potrebbe anche pensare di fare una follia: andare a dicembre quando è sempre notte e si possono vedere le aurore 24 ore al giorno (o quasi) ma io lo sconsiglio. Le temperature sono basse, anche -40°C in Lapponia (più clementi lungo la costa norvegese e islandese ma siamo sempre molto sotto lo zero); la Natura, che è favolosa, non si può ammirare in pieno, girare in auto è certamente più pericoloso, il clima è peggiore e le aurore tendono a essere un po’ più pigre rispetto ai periodi a cavallo degli equinozi, quando si può godere di 12 ore di luce e altrettante di buio. Alcuni fotografi preferiscono le notti con la Luna perché illumina il paesaggio ma io consiglio di scegliere dei periodi a cavallo della Luna nuova. Mai andare con la Luna piena perché le aurore, anche quelle intense, saranno sovrastate dalla luminosità del nostro satellite naturale e rese meno spettacolari.

La durata del soggiorno dipende dai nostri impegni: si può fare un week end lungo di 3 notti, come ho fatto io per due anni di seguito, e avere una fortuna sfacciata di trovare sia il sereno che una tempesta magnetica che ha illuminato a giorno il paesaggio (ma era a cavallo del massimo solare, in pratica era più difficile non trovare un’aurora intensa che trovarla!), oppure optare per un soggiorno più lungo e con ritmi più blandi. Una settimana, quindi, sembra essere il compromesso ideale tra spesa, impegno e possibilità di trovare un’aurora in forma e tempo bello.

Per godersi lo spettacolo in sicurezza e con le maggiori possibilità di trovare tempo bello, è meglio seguire qualche semplice consiglio.

Tempesta magnetica, con indice Kp pari a 7: il cielo si accende di colori in movimento.

Tempesta magnetica, con indice Kp pari a 7: il cielo si accende di colori in movimento.

Come organizzare il viaggio

Il viaggio inizia almeno 2-3 mesi prima, se vogliamo trovare condizioni economiche vantaggiose. Se sappiamo muoverci su internet, si può organizzare tutto da soli. Quello che ci serve sono:

  • Voli di andata e ritorno per la località scelta. expedia.it o www.skyscanner.it per trovare le migliori tariffe;
  • Dove soggiornare. Anche qui possiamo controllare expedia.it o www.booking.com ad esempio. Il consiglio è scegliere un hotel attrezzato non nel centro di una città, così se il tempo sarà bello potremo ammirare l’aurora addirittura dalla finestra della camera, come è capitato a me una notte di quasi tre anni fa. In alternativa, se preferiamo spendere meno, potremo scegliere una sistemazione in città, ad esempio Tromso, ma dobbiamo essere coscienti che dovremo comunque spostarci, anche di diversi chilometri, per vedere bene l’aurora;
  • Noleggio auto. Stiamo andando in luoghi selvaggi e con spazi enormi: è impensabile cercare di spostarsi con mezzi pubblici (che spesso neanche ci sono). Un’automobile è obbligatoria, quindi, sia per raggiungere l’hotel dall’aeroporto che per visitare le zone alla ricerca della natura diurna e dell’aurora notturna. Le condizioni meteo infatti non sono stabili e può capitare, soprattutto se ci troviamo lungo la costa norvegese, di dover affrontare centinaia di chilometri di guida per trovare un cielo sereno. Dobbiamo quindi essere mentalmente pronti al nostro obiettivo: se vogliamo vedere l’aurora potremo doverla cercare con le unghie e con i denti. Le strade sono generalmente tenute bene ma nei mesi invernali, fino ad aprile, sono spesso coperte di ghiaccio. Le auto noleggiate hanno equipaggiamento invernale e sono dotate di ruote chiodate per affrontare quasi ogni terreno (persino laghi e fiumi ghiacciati, ho già provato), quindi la guida, se condotta con molta prudenza, è di certo più sicura di quanto accade nelle nostre città quando cade il primo nevischio misto ad acqua. Nei principali aeroporti: Kiruna se si sceglie Abisko, Tromso se si sceglie la costa, Reykjavik per l’Islanda, sono presenti le principali agenzie di noleggio, quindi possiamo dare un’occhiata a expedia.it o www.rentalcars.com per noleggiare la nostra auto, orientativamente quando scegliamo di prenotare il volto. Se abbiamo un hotel nel centro di una città, l’auto serve a prescindere dal meteo perché dobbiamo allontanarci dalle luci il più possibile per ammirare al meglio lo spettacolo (l’ho già detto, ma se l’ho ripetuto anche qui un motivo c’è!);
  • Noleggio abbigliamento termico. Per quanti vestiti pesanti decideremo di portare in valigia, non saranno mai abbastanza per proteggerci dalla notte artica. Il consiglio è quindi semplice: lasciare a casa l’armadio della roba pesante e noleggiare direttamente sul posto l’abbigliamento adatto. Per circa 30-40 euro al giorno si può prendere tutto l’occorrente: scarponi da neve, tuta imbottita simile a quelle degli astronauti, guanti, cappello ed eventualmente maschera per gli occhi. Su internet si trovano molti negozi di noleggio nelle principali città. Alcuni hotel, soprattutto nella zona di Abisko, forniscono direttamente il servizio di noleggio dell’abbigliamento: basta contattarli (tutti parlano inglese).
    Un consiglio è d’obbligo se avete intenzione di fare molti spostamenti, soprattutto in Scandinavia. L’abbigliamento che noleggiate in città più miti come Tromso non è adatto alle rigide notti della Lapponia, pur essendo vicine in linea d’aria e quindi raggiungibili in auto in un paio d’ore: tenetelo presente per non dover soffrire il freddo per tutta la notte e nel caso fate presente al negozio di noleggio che volete abbigliamento adatto anche per climi più freddi.
  • Tour guidati. In Islanda, ma soprattutto in Scandinavia, ci sono molte agenzie che organizzano tour guidati per osservare le aurore. La realtà, secondo me, è che non servono: basta un’auto e un posto scuro per ammirare l’aurora senza l’aiuto di una guida che vi chiederà prezzi stratosferici. Questa è una costante di quelle regioni: tour, escursioni e visite guidate potrebbero costare anche ben oltre 100 euro a persona; valutate quindi bene se ne vale la pena o meno.
  • Cellulare e un piano dati adatto all’estero. Probabilmente vi sconvolgerà la cosa, ma anche nel posto più remoto della Lapponia, in mezzo a un lago ghiacciato che si perde a vista d’occhio, senza la minima presenza di civiltà per decine e decine di chilometri, il vostro cellulare segnerà piena ricezione della rete 4G. Se avevate in mente di staccare dalla vita di tutti i giorni, allora meglio spegnere il telefono perché non siete in un paese sufficientemente arretrato da permettervi l’isolamento completo. In realtà, scherzi a parte, la ricezione cellulare in posti deserti e difficili come la Lapponia è estremamente comoda e importante, perché di fatto non saremo mai isolati dal mondo e in caso di aiuto basterà fare una telefonata. Il consiglio, quindi, anche per avere a disposizione mappe della zona e un collegamento a internet per controllare meteo e previsioni dell’aurora, è quello di attivare un’offerta internet valida per l’estero con il proprio operatore e affrontare quindi il viaggio avventuroso in maniera molto più tranquilla.
Il magnifico deserto di ghiaccio della Lapponia.

Il magnifico deserto di ghiaccio della Lapponia.

 

Altri spiccioli consigli per un viaggio indimenticabile

  • In caso di problemi, tenete presente che siete in un posto estremamente civile: se le sporadiche auto vi vedranno a bordo strada con le 4 frecce accese o con gli abbaglianti di notte, si fermeranno tutte per assicurarsi che state bene e che non vi serve aiuto. Se non volete essere disturbati o creare falsi allarmi, quindi, spegnete frecce e fari: è il modo per dire che non vi serve aiuto.
  • La popolazione è generalmente molto disponibile e cordiale. Se vi serve qualcosa non abbiate paura a chiedere. Se siete in macchina lungo la Northern Lights road, nel mezzo della tundra lappone, e non sapete dove fermare la vostra auto e scendere per ammirare l’aurora perché la neve ai lati della strada è alta un metro, potrete parcheggiare nel cortile di una delle poche casette che incontrerete sul percorso. E sebbene per noi appaia impossibile che un proprietario di casa accolga tre auto piene di gente incappucciata, che parlano una lingua straniera e che hanno occupato il suo suolo, con un saluto, una lunga chiacchierata e un invito a parcheggiare di fronte alla sua porta e restare a osservare l’aurora lì tutta la notte, in Lapponia questo succede davvero e non si rischia un colpo di fucile, come può invece capitare nelle nostre ben più pericolose campagne;
  • L’attività dell’aurora si può tenere sotto controllo in tempo reale e si possono avere anche previsioni abbastanza accurate fino a 48 ore. Ci sono tanti siti da controllare quindi per capire cosa ci aspetta nel futuro prossimo. Eccone un paio: spaceweather.com e http://www.aurora-service.eu/aurora-forecast/ . Le intensità delle aurore si misurano spesso con un indice denominato Kp: valori inferiori a 3 indicano un’aurora molto debole. Da 3 a 5 indicano un’attività moderata che comincia a essere spettacolare e oltre 5 assicurano uno spettacolo tanto luminoso da abbronzare, di quelli che non si scorderanno mai più. Più è intensa la tempesta magnetica e più a sud scendono le aurore. Ecco allora che se l’indice Kp arriva a 9 queste si possono vedere, seppur tenui e in lontananza, persino nel nord Italia! I valori possono cambiare nel giro di un’ora, quindi teniamoli sott’occhio sempre: le previsioni a breve termine, come in meteorologia, sono decisamente più affidabili, quindi se entro qualche ora è prevista una tempesta è molto probabile che ci sarà!
Una spettacolare aurora al tramonto, dal cortile di casa di un ospitale abitante di quelle fredde e spettacolari regioni.

Una spettacolare aurora al tramonto, dal cortile di casa di un ospitale abitante di quelle fredde e spettacolari regioni.

 

Come osservarle e fotografarle

Le aurore sono uno spettacolo che non richiede strumenti per essere ammirato: serve solo un cielo libero da nuvole e lontano dalle luci delle città. Per questo motivo, se siamo muniti di auto e di una mappa sul cellulare, possiamo scegliere i posti più belli e suggestivi per godersi lo spettacolo. Possiamo scegliere un suggestivo lago ghiacciato, come mi è capitato due anni fa, o un fiordo non ancora congelato in cui si rifletteranno le luci dell’aurora: le opportunità per rendere ancora più indimenticabile la nostra avventura sono tantissime e le possiamo trovare con le nostre forze, perché questo è un viaggio in cui possiamo decidere noi cosa fare, dove e in che modo, in piena libertà. Se abbiamo l’abbigliamento giusto la notte non sembrerà molto fredda, grazie anche all’umidità in genere sempre bassa e potremo starcene fuori per ore. Le aurore in generale si vedono meglio nella prima parte della notte, ma sono sempre molto imprevedibili, un po’ come le stelle cadenti. Anche nella serata in apparenza più tranquilla può verificarsi un momento

Quando l'aurora fa sul serio diventa più luminosa delle stelle più brillanti, cancellandole letteralmente dal cielo.

Quando l’aurora fa sul serio diventa più luminosa delle stelle più brillanti, cancellandole letteralmente dal cielo.

in cui di punto in bianco tutto si accende come se ci fosse un incendio in cielo. E in effetti questo è quanto è accaduto a me ormai quasi due anni fa. Di ritorno da una bella serata in Lapponia, l’aurora sembrava ormai essersi spenta, con il cielo che era diventato nero come la pece a causa dell’assenza totale di luci. Dopo un rifornimento di carburante in una remota stazione, a un certo punto, guardando dal parabrezza, notai che il cielo si era improvvisamente tinto di verde. Gettata l’auto su una provvidenziale piazzola di sosta e scesi senza nemmeno indossare i pesanti abiti termici, abbiamo assistito a uno spettacolo di indescrivibile potenza, che riesco ancora ad ammirare nitidamente mentre sto scrivendo queste parole, con il cuore che ricomincia a battere all’impazzata e le mani che sudano, proprio come in quel momento, in cui a -18°C in felpa e scarpe da ginnastica sentivo tutto tranne che freddo.

Se vogliamo tentare di immortalare uno spettacolo del genere, ci basta una camera digitale, meglio una reflex con obiettivo grandangolare da 8-14-18 mm, su un modesto treppiede da pochi euro. A seconda della potenza dell’aurora possiamo impostare 800 ISO, diaframma tutto aperto e scatti da qualche secondo fino a 30 secondi. Andare oltre non conviene anche con aurore deboli perché le foto verrebbero mosse a causa del moto della Terra e dell’aurora stessa. Nei momenti più intensi ho visto un mio amico scattare a mano a 3200 ISO e 1/15 di secondo a f3.5 e bruciare alcune parti della foto a causa della potenza dell’aurora!

Se volete vedere altre mie foto delle aurore, cliccate qui.

Se volete leggere il resoconto del mio ultimo viaggio, scritto in tempo reale, cliccate qui.