Ancora sulla spettroscopia di base

Lo abbiamo visto insieme qualche tempo fa: la spettroscopia sta iniziando a diventare una attività molto apprezzata dagli astrofili!

Certamente questo è dovuto alla maggior disponibilità di strumenti di qualità a un prezzo abbordabile (camere CCD mono di buona fascia e filtri per spettroscopia, come gli Star Analyzer) ma anche al crescente interesse degli astrofili verso il sottile, ma netto, confine che divide ricerca scientifica (magari anche solo amatoriale) dalle osservazioni astronomiche fotovisuali tradizionali.

A mio parere questo cambiamento nasce da una sommatoria di fattori.

In parte, come appena visto, si tratta di precondizioni tecnico-strumentali, commerciali se si vuole, ma non credo che questo esaurisca il tutto….

A pesare, infatti, iniziano ad essere anche profili ulteriori, quali certamente quelli ambientali! La presenza di un IL sempre più invasivo sui cieli della nostra bella penisola, infatti, sta facendo emergere la necessità di ricercare qualcosa di più compatibile con l’astronomia dalla città, rispetto al tradizionale deepsky a colori. Un buon deepsky full-range richiede davvero cieli da paura, per essere fatto al meglio; e cieli come quelli, oramai, stanno diventando una rarità, non solo in Italia, ma un po’ in tutta Europa! Dimostrazione, in tal senso, di una ricerca da parte degli astrofili di qualcosa di differente e di più city-friendly, la si ha semplicemente guardando l’esplosione dell’imaging narrow band, avvenuta negli ultimi anni. Grazie a questa tecnica, è possibile da tempo ottenere grandi immagini anche sotto cieli pesantemente inquinati. E a costi, tutto sommato, ragionevoli…

Ma anche qui, qualcosa ancora pare sfuggire, a mio avviso. In parte, credo, a condurre verso delle scelte astronomiche un po’…border-line…è anche un fattore sociale e culturale. Mi spiego meglio: negli ultimi anni, proprio la grandissima diffusione dei CCD di qualità e dei filtri interferenziali a banda stretta ha permesso di effettuare riprese deepsky davvero pazzesche; del resto anche i software di elaborazione e acquisizione, sempre più potenti e accurati, se ben usati, permettono di ottenere con piccoli diametri immagini un tempo del tutto impensabili!!! Queste immagini, naturalmente, ottengono il giusto e meritato risalto sul web, correndo in punta di social network, e in una frazione di secondo, da un capo all’altro del mondo. Ecco, forse il nodo gordiano è proprio questo. Che è bello confrontarsi e misurarsi con gli altri, condividere e valutare i limiti delle proprie capacità, cercando di migliorarsi e di imparare sempre da chi ne sa di più; ma questo incredibile proliferare di immagini strepitose su internet, con risultati qualitativamente a volte davvero inavvicinabili per l’astrofilo comune, forse da un lato un po’ intimorisce, e fa sorgere il desiderio di praticare una astronomia un po’ più a passi lenti. Un po’ la versione astronomica dello slow-food, se vogliamo. Potremmo chiamarle osservazioni slow-sky…

Sia ben chiaro, di foto ne abbiamo fatte tantissime tutti, e siamo tutti fieri dei piccoli, medi e grandi risultati ottenuti: ma forse questi segnali di interesse verso il mondo dell’astronomia scientifica meritano di essere valorizzati più di altri. Proprio perché una foto può far moltissimo clamore, ma il picco di una riga di emissione….quello no….. E a mio personale avviso, quei pochi dati, salvati in un angolino del nostro stipatissimo hard disk, hanno un bellezza senza clamore. Ma eterna! Che perdurerà a dispetto delle innovazioni tecniche e tecnologiche che sicuramente il prossimo futuro ancora ci riserverà.

In conclusione, scrivo tutto questo per presentarvi quest’oggi un interessantissimo contributo, nel campo degli spettri, dell’amico Massimo Di Lazzaro, che ci illustra passi compiuti e i risultati ottenuti. Con la convinzione che questa sua esperienza da neofita, in crescita, della spettrofilia, unita ad altri contributi già pubblicati e ad altri ancora che verranno, possa permettere a tutti di assaggiare un pochino le sensazioni e le emozioni che questo peculiare modo di approcciarsi al cielo veicola.

E magari, chissà, faccia sorgere anche in qualcuno il desiderio di provare e di cimentarsi.

Buona lettura.

LUCA ZANCHETTA – TELESKOP SERVICE ITALIA


Spettroscopia amatoriale….una nuova avventura

Qualche mese fa ho cominciato ad interessarmi di spettroscopia, un mondo interessante, complesso forse, ma pieno di belle sorprese! Chi si sarebbe mai aspettato che da una semplice serie di riprese avrei potuto scoprire cosa si nasconde dentro a quel raggio di luce remoto, capire come è fatta e come si comporta una stella!!!

La curiosità si è accesa osservando qualcosa di semplice, bellissimo ma quasi banale, come un arcobaleno; mi sono sorpreso ad interrogarmi in dettaglio sulla esatta modalità con la quale si formano i colori, sulla natura di ciò che vediamo realmente, sul perché!

Avevo quindi bisogno di documentarmi, leggere un po’ di testi di fisica, apprendere il più possibile: in rete ho trovato moltissime informazioni, ed ho potuto studiare un po’ di astrofisica (l’ABC intendiamoci…) e iniziare da lì a capire che tipo di strumentazione mi sarebbe servita con esattezza! Un contributo essenziale mi è stato dato proprio qui, da TS Italia: mi hanno seguito e consigliato su tutto, dal telescopio più adatto allo scopo ed alle mie esigenze (un RC8”: uno strumento eccezionale, versatile e soprattutto pressoché privo di aberrazioni), compresa montatura (Neq6 Pro), camera CCD (QHY5LIII-178 monocromatica)…

Ecco qui a dire il vero è stato il difficile. Ho avuto diverse perplessità, perché non è così semplice, a livello pratico, capire da subito e in un ambito così particolare, quale è la camera più adatta! Anche in considerazione di un budget che non poteva essere illimitato…Nella fotografia tradizionale scegliere è abbastanza più semplice devo ammettere (sempre budget permettendo); ma qui l’esigenza era di una camera con dei requisiti davvero particolari. Ebbene, nella nuova QHY li ho trovati! Non è qui il caso di stare a descriverli nel dettaglio, per quelli basta andare sul sito di TS Italia e si trovano tutti… Però anche qui della scelta finale sono soddisfatto!

Poi, la vera grande scelta: spettroscopio o Star Analyzer 100? La scelta è stata facile: SA100! Un reticolo di diffrazione semplice da usare, che si avvita direttamente sulla camera e in grado di restituire da subito lo spettro della stella che si sta riprendendo. Certo, è a bassa risoluzione, quindi alcune cose sono precluse, ma per iniziare è davvero il massimo!!! Anche perché gli oggetti da poter riprendere sono ugualmente moltissimi.

Poi il software: anche qui la scelta è stata dettata dalla facilità di utilizzo, in primis, ed ho scelto quindi R-Spec. Devo davvero spendere due parole su questo software: è molto completo e di facile utilizzo, grazie anche ai numerosi tutorial inseriti già nella barra degli strumenti; fantastico! Permette di salvare i profili all’interno del software, in apposite cartelle, così da essere sempre pronti quando si vuole ritrovarli, senza andare a spulciare manualmente nel PC. E sei hai bisogno di assistenza il progettista del software è sempre a disposizione! Ogni tanto gli scrivo, siamo rimasti in contatto, anche se ha sede in America, e sono davvero soddisfatto anche di questa scelta.

Ora non rimane che “andare a caccia di spettri” ed appena il tempo lo permette ne approfitto per recarmi al sito astronomico della mia associazione: il Gruppo Astrofili Galileo Galilei di Tarquinia per fare le prime acquisizioni spettroscopiche. Qui giunti, non resta che preparare il setup e riprendere; dopo aver ultimato la preparazione di tutto, ho cominciato con lo spettro di Sirio. L’alta risoluzione della QHY in questo mi ha aiutato tantissimo, e mi ha permesso di avere degli spettri di ottima qualità. Ho effettuato le riprese in formato video, per poi estrarre dal filmato i singoli frame più utili, e passare quindi ad analizzare ed elaborare il profilo della stella:

a

b

Quello si va qui ad analizzare, è l’idrogeno nelle sue varie lunghezze d’onda, che è ovviamente l’elemento principale di una stella. All’inizio è stato piuttosto complicato comprendere con esattezza come elaborare lo spettro poiché i tutorial, anche se molto intuitivi, erano comunque tutti in un inglese piuttosto tecnico! Con l’aiuto di alcuni amici, però, alla fine ce l’abbiamo fatta e la soddisfazione è stata davvero tanta! Sirio è la stella scelta per la calibrazione dello spettro di Betelgeuse, una supergigante rossa, cui ho dedicato molto più tempo: nuovamente, sono stato soddisfatto dei risultati ottenuti! Nelle due immagini a seguire, vediamo lo spettro calibrato in lunghezza d’onda e poi il profilo finale.

c

d

Ho preso sempre più confidenza con il software e dopo aver passato in rassegna le due stelle più belle dell’inverno sono passato a quelle estive: cominciamo quindi con Vega, bellissima stella nella costellazione della Lira. Anche qui spettro calibrato in lunghezza d’onda e profilo finale.

e

f

Tutte queste sono ovviamente stelle piuttosto facili da analizzare: Sirio e Vega sono di classe spettrale A e Betelgeuse è di classe spettrale M. Sono quindi stelle alla portata di tutti!

Non appena avrò maturato abbastanza esperienza, passerò certamente ad altri e più impegnativi obiettivi, come le stelle Wolf-Rayet e le supernove…

Per me il viaggio è appena incominciato: ho in programma numerosi spettri da riprendere ed elaborare, e spero di poterveli mostrare il prima possibile.
A presto
Massimo Di Lazzaro

 

Una esperienza con il nostro APO 115/800 FPL51

Ormai lo sanno tutti: nel mood di questo blog, è stato già detto in tutte le salse, non c’è l’idea che la divulgazione dell’astronomia debba essere uno spazio elitario, che rende ogni spazio una sorta di cassa di risonanza autoreferenziale dei soli grandi nomi, da tributare a chi ha grandi competenze, strumenti blasonati e costosi e una esperienza strutturata di fascia altissima!

Per noi di TS Italia, gli spazi per la divulgazione astronomica devono intendersi come punti di incontro per gli astrofili, devono sempre più diventare spazi e momenti dedicati a far valere l’esperienza sul campo, la propria esperienza sul campo; quella personale, quella vera, quella genuina, qualsiasi essa sia, cercando sempre di essere costruttivi e di dare un proprio contributo. Certo una goccia nel mare. Ma una goccia che possa contare. E in fondo non è proprio questo il modo di operare di chi contribuisce alla crescita del sapere? Piccoli passi, silenti, senza troppo clamore… Amatoriali o professionali che siano!

In questo blog, insomma, vogliamo che a contare sia anche il contributo di astrofili comuni, astrofili come noi!

Oggi, quindi, vi introduco un nostro carissimo e giovane amico astrofilo, Nicola Russo, il quale, complice la giovane età – e non, come si sente dire troppo spesso, “a dispetto della giovane età” – ha dimostrato di disporre di una grandissima passione e di una genuina voglia di sperimentare e mettersi in gioco.

Per noi ha realizzato una semplice ma molto interessante prova del suo rifrattore TS APO 115/800 FPL51, effettuando anche un confronto con il suo storico TS APO 80/480 FPL53.

I contribuiti fotografici sono tutti suoi, e sono sicuramente di valore. Sono visibili cliccando sul titolo di questo post per aprirlo in dettaglio.

Grazie Nicola!

Buona lettura a tutti.

LUCA ZANCHETTA – TELESKOP SERVICE ITALIA


 

Carissimi amici astrofili vorrei scrivere due righe per una breve recensione sul rifrattore TS 115/800.

Essendo già possessore di un TS 80/480 flp53 per riprese a largo campo , mi sono più volte posto il problema di quale telescopio acquistare per riprese di galassie e planetarie.

All’inizio ero intenzionato a prendere un RC 8 o un APO 130 mm TS, ma leggendo in rete ho notato che sulla mia montatura CGEM entrambi erano abbastanza ostici da bilanciare, con il rischio di non poter fare lunghe esposizioni.

Alla fine mi sono soffermato su questo rifrattore 115/800, che mi intrigava molto; leggendo tra i vari forum e avendo trovato online alcune recensioni, ho notato che in molti erano dubbiosi, in particolare, per il fatto che il telescopio monta dei vetri FPL51. Volendolo comunque acquistarlo, ho cercato su Astrobin alcune foto realizzate con questo telescopio e ne sono rimasto molto colpito.

Oggi posso dire che mai scelta è stata più felice: rapporto qualità/prezzo davvero buono, robustezza e praticità unica e ottimo focheggiatore, molto robusto: l’ho utilizzato sia con la reflex 40D sia con la camera CCD QHY10, non notando alcuna problematicità, con entrambi i setup. Sono riuscito a realizzare guide di oltre 500 secondi, con ottimi risultati.

Grazie allo spianatore/riduttore TSRED 0.79x, sono riuscito a sfruttare eccellentemente i generosi sensori della reflex e del CCD.

Il tubo dispone anche di un paraluce estraibile, davvero fluido e utilissimo.

Infine, parliamo un po’ di questi famosi vetri FPL51: sarà forse perché non mi considero ancora un astrofilo di grande esperienza, oppure sarà legato al fatto che effettuo le mie riprese prevalentemente sotto un cielo cittadino, con inquinamento luminoso notevole, ma nella mia modesta esperienza trovo che la differenza rispetto ai più blasonati e costosi vetri FPL53, come quelli presenti nel mio TS 80/480, sia davvero estremamente contenuta.

Le stelle con questo telescopio risultano perfettamente puntiformi e prive di aberrazioni cromatiche su tutto il campo!
Posso dire con certezza che, per chi oggi è intenzionato ad acquistare un rifrattore di qualità con apertura superiore ai 100mm, avendo anche un occhio di riguardo al budget, il TS 115/800 è forse la scelta migliore!

Nicola Russo

Appunti di spettroscopia, qualche risultato

Negli ultimi tempi i contributi su questo blog sono fioccati, con risultati davvero notevoli ed articoli di assoluto rilievo! Dai contributi del nostro eccellente Daniele Gasparri a quelli di profilo scientifico di Albino Carbognani: non ci siamo davvero fatti mancare nulla. O quasi….

In effetti, ci abbiamo pensato un po’ su, ma tra la grande divulgazione tecnica e i profili scientifici più alti qualcosina, ancora, mancava… Mancava il contributo di astrofili comuni, astrofili come noi, magari molto specializzati! Contributi di profilo tecnico, con un taglio operativo, ma sempre con uno sguardo, una strizzata d’occhio, al mondo scientifico. Ad avviso di chi scrive, interventi come quello che vi sto introducendo, dovrebbero rappresentare, specie in tempi in cui è molto ampia la possibilità di accesso e di condivisione paritaria delle informazioni, un vero riferimento per tutti gli astrofili, e forse indicare quello che si potrebbe considerare come il solo, vero obiettivo tecnico finale, per una ampia parte degli astrofili amatoriali: fornire un proprio, personale, preziosissimo ed apprezzatissimo contributo alla ricerca scientifica! Naturalmente, ciò non può che riguardare soprattutto e in particolare gli astrofili con un po’ più esperienza alle spalle, ma senza escludere mai nessuno.

Certo, i contributi di profilo scientifico vengono spesso forniti in silenzio, senza clamori, senza luci della ribalta, e forse anche per ciò finiscono con l’essere interesse solo di pochi. Non fanno sgranare gli occhi ai bambini, alla vista di tutti quei colori. E non sono comprensibili direttamente ad una vasta platea di uditori generalisti. Ma sono proprio questi contributi a rendere il maggior servizio alla scienza e a far progredire DAVVERO il sapere umano!

Passo quindi a presentarvi, quest’oggi, il contributo di un grande astrofilo, oltre che di un grande amico e di un vero e proprio vulcano di idee, risorse ed ingegno: Claudio Balcon. Nel ringraziarlo personalmente, e a titolo di TS Italia tutta, per aver dedicato parte del suo, pur già ridotto, tempo libero per redigere questo articolo, mi limito a concludere rimarcando il fatto che, qui, si ha a che fare con una passione vera e profonda, di quelle che ci mostrano come la grandezza, per un astrofilo, non si misuri col portafogli, ma soprattutto con l’orologio, oltre che con la testa e con il cuore!

Grazie Claudio!

Buona lettura.

 

LUCA ZANCHETTA – TELESKOP SERVICE ITALIA

 

 


0

Innanzitutto una piccola introduzione di storia della spettroscopia. A dispetto di quanto si potrebbe pensare, la spettroscopia ha avuto inizio molto molto tempo fa, fin dai tempi di Tolomeo, o addirittura prima: nonostante l’altissimo valore del contributo dato da Tolomeo, infatti, non si può scordare che egli condusse i propri studi riprendendo il lavoro effettuato già molto prima di lui da Ipparco, il quale classificò le stelle non solo per intensità ma anche per colore, in particolare distinguendole tra bianche e rosse.

Tuttavia lo scopo di questo articolo è molto più attuale e richiede, quindi, un salto temporale in avanti di almeno un paio di millenni! Nel mondo contemporaneo non ci sono di certo difficoltà ad avere accesso ad articoli, lezioni universitarie, trattati di varia natura in tutti i campi della scienza. C’è una cosa però che in nessun caso riusciremo a trovare preconfezionata in forma digitale, ovvero l’emozione! La scarica di adrenalina pura che ti investe quando sei proprio tu, di persona, quello che ha conseguito un risultato tecnico e scientifico che fino a prima ti sembrava impossibile; e che magari è anche una prima volta, in termini di risultato, dal punto di vista scientifico.

Quando guardiamo un oggetto scarsamente luminoso, il nostro occhio non riesce a percepirne i colori, in quanto attiva dei recettori a maggior sensibilità in grado di discernere solamente vari livelli di grigio. Se osserviamo la nebulosa di Orione con un binocolo o un piccolo telescopio, ad esempio, notiamo solamente un chiarore blu-verde, ben lontano dalle complesse dominanti cromatiche che emergono nelle immagini fotografiche più profonde che libri, riviste e internet ci offrono a pioggia; immagini che forse, in prima battuta, da neofiti, anche noi speravamo di vedere, immergendoci nel tripudio di una molteplicità di brillanti colori.

L’avvento della pellicola fotografica prima, e della camera CCD/CMOS poi, ci ha consentito, tuttavia, di arrivare laddove il nostro occhio non può assolutamente arrivare. I sensori elettronici a colori consentono di ottenere tre immagini nelle bande di colore rosso, verde e blu (RGB) che, una volta composte, riproducono la gamma cromatica tipica della nostra capacità visiva. I vantaggi di questi dispositivi sono molteplici: dalla possibilità di poter impostare tempi di esposizione enormemente superiori al tempo equivalente alla nostra capacità visiva, a quella di utilizzare una efficienza quantica fino a oltre 100 volte superiore a quella dell’occhio e persino a quella della pellicola fotografica. Fra i sensori a colori, tuttavia, non esiste di fatto uno standard rigoroso per quanto riguarda la curva di risposta delle bande RGB, ed è pertanto difficile confrontare misure fotometriche riprese con camere a colori diverse tra loro.

A differenza dei micro-filtri RGB integrati, nonché dei tradizionali kit RGB di filtri in cella ad uso ritrattistico, quelli fotometrici UBVRI sono normalizzati e consentono di ottenere misure calibrate secondo standard riconosciuti in ambito scientifico mondiale. Naturalmente la standardizzazione di questi filtri pone anche dei limiti: qualora volessimo, infatti, aumentare la risoluzione spettrale sarebbe necessario incrementare il numero di filtri con bande passanti più strette e contigue. Il vantaggio di questo sistema, anche se crea qualche lineamento di complessità in fase di ripresa, è quello di coprire tutta l’area geometrica del sensore, consentendo quindi di analizzare più soggetti contemporaneamente, ma in questo caso ciò va a scapito nuovamente della praticità operativa, in quanto diventa necessario provvedere a realizzare un numero elevato di pose per ciascun campo inquadrato.

Prendendo in considerazione, ad esempio, dei filtri dotati di una banda da 1nm, e volendo coprire tutto lo spettro del visibile, sarebbero necessari centinaia e centinaia di filtri, per ciascuno dei quali diventa indispensabile effettuare altrettante riprese. Questa strada, perciò, risulta essere una decisamente improponibile…

Per avere risoluzioni spettrali superiori a quelle ottenibili con i filtri fotometrici si utilizzano quindi gli spettroscopi. Le caratteristiche di questi strumenti, come quelle dei telescopi ai quali sono collegati, dipendono fortemente dagli obiettivi che si vogliono raggiungere, ad esempio: classificazione spettrale delle stelle, misura della velocità di rotazione delle galassie, analisi chimica delle nubi interstellari, ricerca di pianeti extrasolari o altro ancora.

Personalmente ho scelto di operare nel campo della spettroscopia a bassa risoluzione. La strumentazione che utilizzo è quindi composta da un telescopio Newton da 8” F5, da un acromatico 80/400 di guida, da uno spettroscopio, da una camera di guida CMOS e una camera di ripresa CCD di buona qualità.

Lo spettroscopio è composto da una fenditura regolabile, da un collimatore da 32mm di focale, da un reticolo di diffrazione a trasmissione da 100 righe/mm, rimovibile dal percorso ottico, e da un obbiettivo da 32mm.

1
Figura 1

 

Con il reticolo rimosso, agendo sulla fenditura, si agisce selezionando l’oggetto da analizzare; per essere più precisi, più che di fenditura dovremmo parlare di una “maschera” poiché, data la corta focale del telescopio, una fenditura propriamente detta non dovrebbe essere più ampia di pochi micron: risulta quindi evidente che mantenere un soggetto, spesso dotato di una luminosità superficiale molto debole, perfettamente centrato su una fenditura propriamente detta per i lunghi tempi necessari ad effettuare una acquisizione di segnale di valore, non è cosa semplice… Pertanto, al suo posto, una più semplice “maschera” viene impiegata, al solo ed esclusivo scopo di evitare la presenza di stelle luminose e di disturbo laddove si andrà poi a disperdere lo spettro.

La figura 1, di cui sopra, è stata ripresa durante la fase di iniziale aggiustamento della posizione delle lame della fenditura, per centrare il nucleo di due galassie (NGC7319 e NGC7320) appartenenti al famoso quintetto di Stephan.

2
Figura 2

 

La figura 2 è stata ottenuta con la stessa strumentazione, ma senza l’interposizione dello spettroscopio, con un tempo di integrazione di circa due ore. La larghezza della maschera, simulata con il rettangolo rosso, è di circa quindici pixel, approssimativamente cinque volte il valore del FWHM delle stelle presenti.

3
Figura 3

 

La figura 3, rappresenta lo spettro ottenuto con circa novanta minuti di integrazione, chiaramente risultante dall’interposizione del reticolo di diffrazione tra OTA e camera di ripresa. Per allineare le immagini, realizzate con pose da cinque minuti, è stata utilizzata una stella presente all’interno della fenditura e visibile nell’ordine zero dello spettro. Le righe verticali sono dovute all’atmosfera terrestre, generate prevalentemente dalle lampade dell’illuminazione pubblica. Le righe orizzontali sono gli spettri degli oggetti selezionati.

In particolare, il riquadro individuato con la lettera A, evidenzia lo spettro della galassia NGC7319, mentre quello indicato con la lettera B individua quello relativo alla galassia NGC7320. Le altre righe orizzontali sono spettri di stelle appartenenti alla nostra galassia. La galassia NCG7319 presenta delle intense righe di emissione, evidenziate nella foto con le frecce, caratteristica che contraddistingue la presenza di un nucleo attivo: si tratta quindi di una galassia di tipo Seyfert.

4

Figura 4

 

Il grafico della figura 4 è stato ottenuto elaborando la figura 3, togliendo il contributo del cielo e, successivamente, tarando la sola dispersione. Per effettuare la taratura è stata presa come riferimento una stella di classe A, nel caso specifico Vega, che è caratterizzata da righe di assorbimento dell’idrogeno ben evidenti. In verde sono riportate le righe di emissione di alcuni elementi in quiete e le barrette orizzontali evidenziano lo spostamento verso il rosso della NGC7319. La velocità di allontanamento indicativamente risulta essere di 6700km/s. Il segnale disperso dello spettro della galassia NGC7320 è basso e rumoroso e non presenta righe che emergono dal continuo.

La spettroscopia a bassa risoluzione di oggetti deboli, effettuata con piccoli telescopi, può fornire informazioni scientificamente di grande interesse, qualora la dispersione del poco segnale raccolto sia in buona parte concentrata in poche righe di emissione.

5
Figura 5

 

La figura 5 è stata ottenuta con una integrazione di dieci minuti ed è relativa al quasar 3C273. Rispetto alla figura 3, la mascheratura qui utilizzata è stata più larga e, come conseguenza, la risoluzione spettrale del fondo cielo è risultata un po’ meno definita. La risoluzione limitata dalla maschera di soggetti estesi è indipendente dal seeing, mentre quella relativa a soggetti puntiformi è direttamente condizionata dal seeing e dagli errori di inseguimento.

6
Figura 6

 

La figura 6 è stata ottenuta eliminando dalla figura 5 il fondo cielo e tarando lo spettro sia in dispersione che in ampiezza. Per eseguire le tarature è stata utilizzata la stella Denebola. Le prime tre righe della serie di Balmer dell’idrogeno sono particolarmente intense rispetto alle altre e risultano spostate verso il rosso. La velocità di allontanamento è di poco inferiore al 16% della velocità della luce, che corrisponde, secondo la legge di Hubble, ad una distanza di oltre 2 miliardi di anni luce.

7
Figura 7

 

La notte del 22 dicembre scorso, nella galassia CGCG58-57 è stata segnalata una probabile supernova di magnitudine 16,4 da parte del ASAS-SN, denominata AT2016izg. La sera del 23 dicembre ho deciso di verificare le modifiche che avevo apportato allo spettroscopio, puntando proprio quella probabile supernova. La figura 7 è la ripresa effettuata con circa un’ora di posa; le barrette rosse evidenziano la supernova in questione.
La sera stessa ho estratto lo spettro della SN e, dopo aver eseguito le necessarie tarature in dispersione ed ampiezza, ho osservato un profilo che avevo già visto altrove: si poteva riconoscere l’ampia e profonda banda di assorbimento del silicio. Successivamente mi sono collegato a “GELATO”, ho caricato il file dello spettro della probabile supernova e dopo pochi secondi è comparso l’esito dell’analisi: supernova Ia, al 100%.

8
Figura 8

 

La figura 8 è stata scarica da “GELATO”. Qualche giorno dopo è arrivata la conferma ufficiale con ATEL 9904 da parte del Mayall/KOSMOS che si trattava proprio di una supernova tipo Ia.

Questa è solo una piccola panoramica di risultati ottenibili con strumentazione amatoriale ed uno spettroscopio fatto in casa. L’emozione provata in quell’istante, ovviamente, è il vero motore di tutto, è quell’emozione di cui accennavo all’inizio, ed è ciò che sprona uno spettrofilo a portare avanti le sue ricerche, migliorando la propria strumentazione e migliorandosi sempre!

L'inconfondibile forma di Orione, in basso a sinistra, domina i cieli invernali. L'intruso luminoso è Giove, che nel 2012, anno di scatto di questa foto, si trovava nei paraggi.

La regina delle notti invernali: la costellazione di Orione

Le notti invernali sono molto fredde, ma allo stesso tempo hanno due grandi vantaggi: 1) Il cielo tende a essere più trasparente che nelle altre stagioni (se è sereno!) e 2) La notte scende presto, così non dobbiamo fare le ore piccole per gustarci un po’ di stelle. C’è anche un terzo vantaggio, ed è quello di poter osservare la costellazione a mio avviso più bella di tutto il cielo: Orione.
Si tratta di un gruppo di stelle riconosciuto come una costellazione sin dalle prime civiltà della Terra. Per i Greci Orione era un grande cacciatore che fece innamorare di lui persino Artemide, dea della Luna e della caccia. La dea era così persa per il gigante cacciatore che trascurò il suo compito di illuminare le notti. Una notte, Apollo, fratello gemello di Artemide, vide Orione nuotare in mare e sfidò la sorella a colpire con una freccia quello che da lontano sembrava un cane. Artemide raccolse la sfida, scoccò la freccia e uccise il cacciatore. Solo dopo, quando il suo corpo venne portato a riva dalla corrente, Artemide riconobbe il suo amato Orione e distrutta dal dolore decise di porlo nel cielo insieme ai suoi cani. Il dolore della dea è ancora visibile nella fredda e triste luce della Luna, che ogni notte viene fatta sorgere e tramontare dalla dea.

Orione è la costellazione più appariscente di tutto il cielo, impossibile da non individuare nelle notti invernali, proprio a cavallo dell’equatore celeste. Anche la forma somiglia a un gigante, il cui corpo è individuato dal grande quadrilatero dominato da Betelgeuse e Rigel, stelle molto brillanti e suggestive. Al centro vi sono 3 stelle quasi allineate e di luminosità simile, che vanno a formare la famosa cintura di Orione. In basso altre tre stelle, più deboli, poste in senso verticale, formano la spada del gigante. In alto, da Betelgeuse si diparte un braccio che sorregge una clava e dall’altra parte, a destra, l’altro che sostiene la pelle di un Leone. Orione contiene al suo interno alcune delle nebulose più belle e suggestive dell’emisfero boreale. Il mitologico cacciatore domina il cielo invernale sin dal pomeriggio, quando si può osservare verso l’orizzonte est. Con il passare delle ore la sua inconfondibile sagoma guadagna sempre più spazio, fino a svettare verso sud poco prima della mezzanotte.

Betelgeuse, la stella di color arancio nell’angolo superiore a sinistra del quadrilatero, è un astro che sta giungendo a grandi passi verso la fine della propria vita. Al suo centro l’idrogeno, il combustibile più appetibile e duraturo con cui le stelle si mantengono in vita, è terminato da tempo. Betelgeuse, allora, da astro azzurro si è espansa all’inverosimile fino a superare il diametro di un miliardi di chilometri e si è trasformata in una supergigante rossa, l’ultimo stadio prima di terminare la propria vita con un’immensa esplosione chiamata supernova. Quando accadrà diventerà per qualche mese più luminosa della Luna piena e sarà visibile persino di giorno. L’appuntamento è fissato in un giorno qualsiasi da qui ai prossimi 50 mila anni. La probabilità di assistere all’esplosione di Betelgeuse, quindi, non è superiore a una su 500 per una persona che vive 100 anni. Non è tanto ma è di certo molto, molto più elevata che vincere a una qualsiasi lotteria.
Le stelle che formano la cintura sono tutte giganti blu. Da sinistra a destra troviamo Alnitak, Alnilam e Mintaka. Citate in tantissime mitologie, antiche e moderne, queste stelle, come tutti gli astri, se ne fregano delle nostre insignificanti vicende e brillano perché così hanno deciso le leggi dell’Universo, non per inviare chissà quale strano messaggio a esseri posti su un pianeta che diventa inivisibile già dalla periferia del Sistema Solare.
Più in basso, nella spada di Orione, si nasconde il tesoro più bello della costellazione e, forse, di tutto il cielo. La stella centrale in realtà non è una stella ma la splendida grande nebulosa di Orione, parte più brillante di un enorme sistema nebulare che avvolge tutta la costellazione. Vale la pena andare sotto un cielo scuro, senza la Luna, e puntare questo piccolo gioiello anche con un modesto binocolo. Ci stupiremo nell’osservare quelle tenui trame di gas dalle quali stanno nascendo ancora oggi centinaia di stelle e chissà quanti pianeti. Non vedremo la distesa di gas in apparenza impenetrabile e colorata che mostrano tutte le fotografie, perché il nostro occhio non è abbastanza sensibile. Noteremo una tenue e delicatissima distesa di quello che il nostro cervello proverà a collegare a un banco di nebbia o a una debole nuvola, ma mai interpretazione è più lontana dalla realtà. Quella nube cosmica ha un diametro di almeno 250 mila miliardi di chilometri (25 anni luce), una densità milioni di miliardi di volte inferiore all’aria che stiamo respirando e brilla perché il gas di cui è composta ha una temperatura di circa 10 mila gradi, a causa della potente energia sprigionata dalle calde stelle nate all’interno. Quattro di queste sono facili da osservare perché sono di buona luminosità: si tratta del famoso trapezio, il cuore caldissimo della nebulosa di Orione. È proprio da ambienti come questo che ha inizio l’avventura di tutte le stelle dell’Universo, dei pianeti e persino della vita.

Un bellissimo disegno della nebulosa di Orione osservata da Giorgio Bonacorsi attraverso un telescopio Newton da 130 mm di diametro e 100 ingrandimenti, da un cielo molto scuro.

Un bellissimo disegno della nebulosa di Orione osservata da Giorgio Bonacorsi attraverso un telescopio Newton da 130 mm di diametro e 100 ingrandimenti, da un cielo molto scuro. Al centro si notano le quattro calde stelle che formano il Trapezio.

Conil nostro piccolo telescopio, magari ricevuto in regalo per Natale, non potremo farci quindi regalo migliore che puntare la grande nebulosa di Orione da un posto scuro e senza la Luna nel cielo, mettersi seduti, osservare per almeno una decina di minuti e godersi il viaggio più veloce ed entusiasmante che abbiamo mai fatto fino a questo momento. In pochi secondi ci siamo spinti a più di 1000 anni luce di distanza, alla scoperta di uno dei tanti tesori nascosti di un fantastico Universo.

1024px-planets_under_a_red_sun

Osservazioni facili ed emozionanti: stelle con pianeti

Uno degli aspetti che ho sempre trovato affascinanti dell’astronomia osservativa è che attraverso la nostra immaginazione, e la consapevolezza di ciò che stiamo osservando, possiamo trovare la più sublime bellezza anche in un’immagine che ritrae un puntino luminoso o un evanescente batuffolo lattiginoso. Non è un’esplosione di chiaroscuri e colori che impressiona in superficie la nostra retina, facendoci gridare dallo stupore per i primi 10 secondi per poi svanire una volta che l’effimero effetto si è concluso. L’astronomia visuale, al contrario, cerca la bellezza nella rappresentazione dell’oggetto che abbiamo di fronte. La sua fioca, indistinta o puntiforme luce non inonda quasi mai la nostra retina ma ha il potere di far meravigliare la nostra anima, superando con facilità le superficiali barriere della vista e utilizzando i nostri sensi come il mezzo per raggiungere una felicità e una pace interiore che raramente hanno eguali nel nostro mondo. È un’attività che nella società frenetica attuale sembra anacronistica e che non ci possiamo più permettere, tanto è diventato prezioso il nostro tempo. Eppure, è l’unico modo che abbiamo per capire qual è il nostro posto nell’Universo, la nostra importanza, quali sono i nostri limiti e le nostre potenzialità; quali sono i problemi veri e quali invece solo degli inutili capricci. E’ l’unico modo per usare al meglio delle nostre possibilità il dono più grande che abbiamo ricevuto: la consapevolezza di quello che ci circonda.

Quando nel 1995 è stato scoperto il primo pianeta extrasolare attorno a una stella simile al Sole, spesso ho passato intere serate della mia adolescenza puntando stelle a caso nel cielo e immaginando viaggi meravigliosi attorno a ipotetici sistemi planetari. Mi sforzavo con la mente di visualizzare quella luce amplificata milioni di volte e quel puntino ingrandito fino a vederne un disco grande quanto il Sole dei nostri cieli. Viaggiavo più veloce di qualsiasi astronave, persino di quella luce che nella realtà rappresenta un limite invalicabile del nostro Universo. E, arrivato fin lì, provavo a girarmi attorno per vedere se potevano esserci pianeti, magari simili alla Terra, ma diversi quel tanto che bastava per lasciare in sospeso il mio giudizio, per dare spazio a quell’alone di mistero, consapevole ma irrisolvibile, che rendeva tutto ancora più magico.
Cercavo e immaginavo… Ogni tanto, spinto da una curiosa nostalgia, volgevo lo sguardo verso quella porzione di cielo dalla quale ero venuto, cercando di capire come si vedesse il Sole e il nostro minuscolo pianeta da quel lontano angolo di Universo. Attraverso il telescopio erano solo dei puntini di luce, come se ne vedono di continuo in ognuna delle nostre stanze buie a causa di televisori, cellulari, elettrodomestici… Se avessi puntato un lontano lampione avrei visto la stessa immagine, eppure non avrei mai potuto fare quel viaggio meraviglioso nell’Universo dentro e fuori di me che solo la volta celeste può regalare.

Sono ormai migliaia i pianeti scoperti al di fuori del Sistema Solare, che quindi orbitano attorno ad altre stelle. Impossibile, persino per molti telescopi professionali, vederli direttamente. Ancora più irrealistico pensare di poterli visitare un giorno non troppo lontano. Eppure noi, cacciatori di meraviglie, di tutto questo non abbiamo bisogno perché il nostro piccolo telescopio e la nostra immaginazione possono attraversare all’instante anche gli spazi più ampi del Cosmo. Ecco allora che l’idea di poter osservare una stella nella cui immagine è racchiusa anche la debolissima e indistinta luce di qualche pianeta, pur non potendolo vedere direttamente, fa venire i brividi.

Il primo pianeta extrasolare scoperto è stato 51Pegasi b, un gigante gassoso che orbita attorno alla stella 51 della costellazione del Pegaso. Questo astro ha una magnitudine di 5,49 ed è persino visibile a occhio nudo se abbiamo una buona vista e un cielo scuro. Qualsiasi binocolo e ogni telescopio ci mostreranno questa stellina sempre più luminosa, di colore leggermente giallo, simile alle altre del cielo ma tanto importante per noi. Da lì è iniziato tutto; da questa stella è partita la grande rivoluzione dell’astronomia e del nostro pensiero, che ci ha visto scoprire in venti anni migliaia di altri mondi, alcuni potenzialmente molto simili al nostro. Non è una semplice stella per noi: è un monumento a un popolo che tra mille contraddizioni e ingiustizie ha continuato a trovare tempo e voglia per guardare l’Universo, con la speranza di conoscerlo sempre meglio e la consapevolezza che in questo lungo percorso diventerà una specie migliore.

51 Pegasi b è un gigante gassoso molto caldo ed è il primo pianeta a essere stato scoperto attorno a una stella simile al Sole. Da lì è iniziato tutto: il nostro tour delle stelle con pianeti non può che iniziare da qui.

51 Pegasi b è un gigante gassoso molto caldo ed è il primo pianeta a essere stato scoperto attorno a una stella simile al Sole. Da lì è iniziato tutto: il nostro tour osservativo delle stelle con pianeti non può che iniziare da qui.

Se vogliamo aumentare la portata emotiva, possiamo scegliere un’altra stella attorno alla quale gli astronomi professionisti hanno scoperto un pianeta simile alla Terra, probabilmente ricco di acqua e, perché no, anche di forme di vita. Il sistema Gliese 667 è composto da tre stelle strettamente avvolte, indistinguibili al telescopio. Attorno a uno di questi astri gli astronomi hanno scoperto ben 6 pianeti (forse 7), uno dei quali sorprendentemente simile alla Terra. Il sistema si trova nella costellazione dello Scorpione e ha una magnitudine pari a 5,89, al limite della visione a occhio nudo, ma qualsiasi strumento, anche il cercatore del telescopio, ce lo mostrerà evidente. Sotto la calda luce di quel puntino rossiccio, chi lo sa, altre forme di vita stanno prosperando e stanno osservando nello stesso nostro istante quel cielo così diverso, in cui una stellina gialla molto debole nasconde la straordinaria storia di questo pianeta e dei suoi abitanti, pienamente consapevoli delle meraviglie dell’Universo.

Gliese 667 è una stella che fa parte di un sistema triplo e ospita uno dei pianeti più simili alla Terra che conosciamo.

Gliese 667 è una stella che fa parte di un sistema triplo e ospita uno dei pianeti più simili alla Terra che conosciamo.

A soli 14 anni luce di distanza, nella costellazione di Ofiuco, si trova una debole stellina molto rossa, denominata Wolf 1061. Brilla di magnitudine 10 ed è visibile solo con binocoli da almeno 50 mm o con ogni piccolo telescopio, non molto distante (in apparenza) dall’ammasso globulare M107. Attorno a questo astro, sovrastato dalla luce di migliaia di stelle ben più brillanti, orbita un pianeta probabilmente roccioso, Wolf 1061 C, alla giusta distanza dalla propria stella, tale da consentire, in teoria, l’esistenza di acqua liquida. La luce rossa della stella trasforma il paesaggio che potremo ammirare dalla sua superficie in una scena per noi quasi apocalittica: tutto il cielo sarà rossastro e tutti gli oggetti avranno tonalità tendenti al rosso, privi dell’azzurro che invece qui sulla Terra è ben evidente. Stare sulla sua superficie potrebbe essere simile a quelle giornate nuvolose in cui c’è in sospensione una grande quantità di polvere proveniente dal deserto del Sahara, che rende tutto uniformemente arancio e rosso.
Non dobbiamo però soffermarci solo su Wolf 1061 C, perché questa stella ospita almeno altri due pianeti rocciosi: uno più lontano e uno più vicino dal corpo celeste sul quale abbiamo deciso di fermarci per un attimo ad ammirare il cielo. Ci sarà qualcuno da quelle parti? E come è possibile che nella luce debole e puntiforme di una stella appena visibile con i nostri strumenti si nascondano almeno tre pianeti grandi come la Terra, che hanno il potenziale di ospitare tutta la complessità biologica che si trova su questa piccola biglia blu scaldata dal calore nucleare di una stella chiamata Sole? È questa una delle grandi sfide dell’astronomia (amatoriale): comprendere ciò che la mente fatica a concepire e che fa parte di una realtà ben più ampia di quella nella quale ci siamo evoluti, fino ad ora.

Wolf 1061: una stellina rossa di magnitudine 10 vicino all'ammasso globulare M107 che merita una visita per scoprire, e immaginare, un sistema planetario formato da tre pianeti, di cui uno potrebbe essere abitabile.

Wolf 1061: una stellina rossa di magnitudine 10 vicino all’ammasso globulare M107 che merita una visita per scoprire, e immaginare, un sistema planetario formato da tre pianeti, di cui uno potrebbe essere abitabile.

Questi sono solo tre esempi di stelle facili da osservare che nascondono pianeti, ma in realtà di osservazioni di questo tipo ne possiamo fare centinaia, se non migliaia, perché la grande maggioranza dei pianeti è stata scoperta attorno a stelle più brillanti della magnitudine 12, quindi accessibili a strumenti anche da 8-10 cm di diametro. Sta a voi fare qualche ricerca su Google e organizzare il miglior tour possibile tra stelle e pianeti. E ricordate sempre una cosa: non si vedono ma ci sono. E a noi, romantici esploratori celesti, tutto questo basta e avanza.

tutorialcinghieheq538

Tutorial Heq5 Kit Cinghie Rowan

Abbiamo il piacere di presentarvi qui di seguito uno splendido articolo, scritto dal nostro amico Lorenzo Sestini, Presidente del Nuovo Gruppo Astrofili Arezzo, che gentilmente ci ho fornito il permesso di ripostare il suo articolo, apparso in originale sul blog dell’Osservatorio Astronomico di Arezzo, dal titolo “Tutorial Heq5 Kit Cinghie Rowan”.

Buona lettura!

 


 

Questo che vi propongo è una specie di istruzione di montaggio per il kit modifica cinghie Heq5 Pro Rowan Engineering Ltd acquistato da Telescope Service Italia.

Kit modifica cinghie Heq5 Pro Rowan Engineering Ltd

Non vi dirò se la montatura migliora o no, non ho ancora avuto modo di testare la suddetta modifica. Posso solo aiutarvi passo passo nel montaggio semplice. Chi ha dimestichezza non avrà nessun problema chi invece è poco “adatto” non deve avere timore. Se si segue questo tutorial passo passo non avrete problemi. Meglio comunque farlo fare ad un amico “smanettone”. Insomma se siete tipi da ufficio e calza maglia lasciate fare per non fare danni.

Vi dico subito che il kit è ben fatto, Tutto imbustato perfettamente con la divisione degli ingranaggi per Ar e Dec. State attenti a non invertire i pezzi che se a prima vista sembrano uguali in realtà non lo sono.

Ecco il kit Rowan a Cinghie.

Il kit in questione è stato montato da me con l’aiuto di Luca Vincenti.

Bene, nel frattempo aprite la vostra confezione e lasciate tutto da una parte.

Cominciamo a preparare la nostra bella Heq5 Pro.

Poniamo sopra un tavolo con la parte dei motori rivolta verso l’alto. Si può fare il tutto anche con la testa nel cavalletto ma fidatevi, fate in questo modo. Rischiate di perdere qualche vite. In questo modo vi rimane tutto nel tavolo.

Smontate le 6 viti del coperchio copri motore. Queste poi riponetele in una bustina. Non vi serviranno più.

Una volta aperta noterete subito il grasso sporco, o pulito, a seconda di quanto nuova è la vostra montatura, che dovrete eliminare. Vale la pena avere le cinghi solo per non stare tutte le volte a ingrassare la montatura in questa parte di meccanica. Non scordatevi comunque che la vite senza fine ha bisogno di grasso.

Date una pulita con un panno.

Cominciamo a svitare. Quanto mi piace smontare, fin da piccolo smontavo tutto. Iniziamo dall’ingranaggio fissato nel perno della vite senza fine. Insomma l’ingranaggio più grande.

Prendete la chiave a brugola che viene data in dotazione con il kit e svitate.

Attenzione che ci sono due viti di fissaggio in questo ingranaggio. Svitate prima la vite che va nella parte piana dell’albero della vite senza fine. Poi l’altra. Niente di fondamentale importanza ma ricordo che il tutorial è per quelli da “ufficio”.

Una volta sfilato l’ingranaggio “viene via senza sforzo” pulitelo e scriveteci con un pennarello da dove lo avete cavato. Se qualche cosa andasse storto avrete sempre il vecchio kit pronto per il rimontaggio.

Procedete anche per l’altro ingranaggio.

Bene, ecco qua tutta la sporcizia sotto gli ingranaggi. Pulite! Svitate le due viti che vedete in foto della scocca anteriore della montatura. Poi girate la montatura e svitate le altre tre viti.

Le viti non sono uguali. Tre piu lunghe e 2 corte. Non mischiate. Una volta aperto il carter anteriore avrete modo di vedere il cuore della montatura. La scheda principale. Bene quelli che vedete sono tutti i collegamenti elettronici. I spinotti piu a destra e piu a sinistra sono rispettivamente Ar e Dec. Con l’aiuto di un cacciavite piccolo staccateli. Non tirateli dai fili!!! Ormai che ci siamo se volete illuminare il vostro canocchiale polare esiste il mini kit da attaccare nello spinotto con filo nero e rosso per attaccarcelo. Questo spinotto porta corrente al led dell’illuminatore polare.

Cominciamo a smontare un motore! Non abbiate paura. Non si rompe niente. Prima di smontarlo fate un pallino con un pennarello nero su dove stava alloggiato. Può servire anche se poi il montaggio è obbligato. “ufficio, ricordate”.

Svitate solo le tre viti che attaccano nel telaio della montatura. Sono tre! Non 4 come si potrebbe pensare con l’immagine sotto. Un foro è li per bellezza nel telaio.

Una volta preso in mano il motore puliamo, e svitiamo i due grani presenti laterali al motore sempre con la brugola in dotazione.

Una volta svitato i grani “senza cavarli dalla sede, puliamo tutta la sporcizia anche qui. Per grassi più ostinati utilizzare un pennellino con un pò di benzina.

Ecco pulito il tutto.

Avrete anche a parte un estrattore. Si può farne a meno ma per il costo che ha vi conviene comprarlo. Nella foto sotto ho provato il pezzo ma ancora aspettate ad utilizzarlo. Prima dobbiamo fare un altra operazione.

Dobbiamo smontare il carterino di alluminio del motore. Segnate in tutti e tre gli angoli con un pennarello. Fate dopo ricombaciare i segni per rimontarlo. Non occorre super precisione.

Svitate le viti a brugola e sfilate il carter di alluminio. Avrete cosi in mano il motorino passo passo nudo e crudo.

Inserite l’estrattore e con l’aiuto di un pappagallo tenete forte il pezzo. Avvitate con forza la vite e vedrete che il piccolo ingranaggio del motore si sfilerà piano piano.

Ecco qua!

Riponete tutti gli ingranaggi per bene in una bustina. Non mischiate con l’altro motore! Tre ingranaggi per movimento. Ar e Dec.

Inserite il primo ingranaggio del kit Rowan, e misurate con un calibro 5,5 mm dal motore. Miraccomando fate questa operazione con cura.

Stringete i grani del pezzetto e fate attenzione. Non strigete a morte perche sono piccoli e si rischia spanature. Due grani. Fate un pò alla volta, prima con uno e poi con un altro fino al completo serraggio.

Rimontate il carterino facendo attenzione ai segni del pennarello.

Inserite il pezzo di teflon. Attenzione qui perche ho trovato difficoltà all’inserimento. Il foro del carter e precisissimo. Si deve premere fortemente per infilare.

Fate un pò alla volta con l’aiuto di un martellino in gomma. Se andate troppo “giù” non si torna in “sù”. E’ talmente duro che con cavolo che riuscirte a sfilarlo di nuovo senza piegare niente. Fate piano piano e a occhio controllate che sia in linea con l’altro pezzo che avete montato prima.

Il rondellone o guida di teflon ha una contro battuta sotto. Fate in modo che non sia accostatissimo. Va allentato e fatto calare. Mi sono arrivati questi pezzo troppo serrati. Fate in modo che il rondellone di teflon ruoti bene, anche con un pò di gioco. E’ solo una sede! Non serve precisione al millimetro.

Non ci resta di rimontare il motore con le sue tre viti. Ricordate il pallino di riferimento. Attenzione ai cavi del motorino passo passo. Nel frattempo infilateli dentro per bene senza farli infrenare. Dopo li riprenderete dal d’avanti dellamontatura per riattacarli alle loro sedi. Inseriamo l’ulitmo ingranaggio nella vite senza fine.

In questo caso è solo infilato. Dovrete regolare l’altezza con i due grani di sotto. A occhio alzate e mettete in linea il tutto. Stringete prima il grano dove nell’albero è piana la sede. Poi serrate l’altro di controspinta.

Inserite la cinghia come in figura.

Figo no?

Ripetete il tutto con l’altro motore! Non cambia niente. solo che per la declinazione avremo il pezzo di teflon più piccolo.

Inserite lo spessore dato in dotazione e rimettete il coperchio con le viti in kit più lunghe e il gioco è fatto.

Ecco qua la nostra bella montatura modificata.

Abbiamo acceso subito la montatura e devo dire che vale la pena solo per non sentire più il rumore metallico degli ingranaggi. Ora è silenziosissima. Si sente solo i motorini passo passo già silenziosi di suo. Ora non resta che provare sul campo quanto possa migliorare per l’autoguida. Ai prossimi aggiornamenti.

Lorenzo Sestini.

 


Credit: http://www.lorenzosestini.it/tutorial-heq5-kit-cinghie-rowan.html

satelliti_giove_giorno

Come osservare e fotografare pianeti e stelle di giorno

L’astronomia amatoriale è una disciplina affascinante, che ci permette di organizzare viaggi indimenticabili pur rimanendo ben saldi a terra. Possiamo scegliere di scorrazzare tra i pianeti, disegnare i crateri della Luna, oppure possiamo cercare di fare foto o addirittura attività di ricerca che di solito conducono gli astronomi professionisti. Insomma, tra tutte le scienze, e probabilmente tra molte altre attività che potremo mai fare, l’astronomia rappresenta l’emblema della libertà più assoluta, anche perché abbiamo a disposizione miliardi di anni luce di Universo da percorrere a una velocità ben superiore a quella della luce, muovendo semplicemente il nostro telescopio.

L’astronomia pratica, tuttavia, ha un grosso problema, banale quanto fastidioso, soprattutto nelle fredde serate invernali: può essere fatta solo di notte. Di giorno, con l’ingombrante presenza del Sole, possiamo sperare di osservare e fotografare solo lui, il nostro enorme faro cosmico, con strumenti e accorgimenti particolari: un po’ poco, soprattutto conoscendo la bellezza e la vastità che presenti oltre la sua accecante luce. La domanda, allora, può venir spontanea, sebbene in apparenza ingenua: possiamo fare osservazioni e fotografie anche di giorno? Certo: possiamo osservare con un radiotelescopio potente, che non teme neanche le nuvole, oppure inviare nello spazio il nostro setup a far concorrenza al telescopio spaziale Hubble e il problema sarebbe risolto. Facile, no?

In realtà, senza scomodare accorgimenti che oggi suonano come pura fantascienza, si può fare un po’ di astronomia anche di giorno, al di là del Sole. Se la nostra passione sono i pianeti, le foto in alta risoluzione o semplicemente avere nuove sfide da vincere, l’astronomia di giorno diventa un’importante risorsa che potrà farci divertire e ottenere ottimi risultati.

Per convincervi che la mia precedente frase non è il classico delirio che si presenta prima o poi a ogni astrofilo che deve sopportare un interminabile periodo di meteo indecente, cominciamo a chiederci: cos’è che impedisce di vedere le stelle di giorno?La risposta è istintiva: il Sole! Ma siamo sicuri? Perché tutti i telescopi spaziali possono osservare il cielo anche con il Sole sopra l’orizzonte? La luce solare è una condizione necessaria ma non sufficiente a nascondere le stelle di giorno, tanto che nello spazio il cielo appare nero come la pece e si possono vedere le stelle anche con il Sole. La responsabile ultima è la nostra atmosfera: l’aria che respiriamo non è perfettamente trasparente ma intercetta una piccola parte della luce solare e la riflette poi in ogni direzione. Questo fenomeno, conosciuto come diffusione, è il responsabile del nostro cielo chiaro di giorno: le stelle non si vedono a causa dell’enorme inquinamento luminoso prodotto dal Sole, che viene diffuso dalla nostra atmosfera e rende il cielo molto brillante.

Ora possiamo fare un altro passo allora, chiedendoci: c’è modo, restando qui sulla Terra, e senza usare un radiotelescopio, di osservare il cielo di giorno? La risposta è sì, ma in realtà la domanda non è ancora necessaria, perché ci sono già alcuni corpi celesti che possiamo osservare di giorno, anche se a occhio nudo crediamo di non vederli. Prima però, proprio come in un film, mi piace creare un po’ di suspance andando a indagare meglio le ragioni per cui dovremo tirare fuori il telescopio anche di giorno (per la felicità di mogli, compagne, figli e datori di lavoro).

 

Perché fare foto di giorno

In realtà fare osservazioni di giorno, al di là del Sole, ha molti risvolti interessanti, che voglio riassumere in pochi e sintetici punti, per andare poi al nocciolo della questione:

  • Per sfida personale;
  • Per il gusto di trovare oggetti che erroneamente reputavamo invisibili con la luce del giorno;
  • Perché non abbiamo tempo di notte, o fuori fa freddo quando non c’è il Sole;
  • Perché alcuni soggetti danno il meglio di sé, sia in fotografia che in osservazione, di giorno. Mercurio e Venere si osservano e fotografano molto meglio quando sono alti sull’orizzonte rispetto al crepuscolo. La Luna in fase ridotta, che mostra regioni spettacolari come il Mare Crisium, si può osservare e fotografare con soddisfazione solo quando è a poche decine di gradi dal Sole, quindi di giorno, se non vogliamo essere distrutti dalla turbolenza atmosferica alle basse altezze sull’orizzonte, come accade anche per Mercurio e Venere;
  • Alcuni fenomeni, come occultazioni, congiunzioni, eclissi dei satelliti di Giove, non sempre capitano di notte: vogliamo farci fermare allora da un po’ di luce solare?
  • Chi monitora i pianeti ha necessità di riprenderli e/o osservarli per più tempo possibile, quindi anche di giorno, soprattutto quando la loro separazione è inferiore ai 40° dalla nostra Stella. In queste condizioni, inoltre, i professionisti non possono osservare e molti amatori si dirigono verso altri soggetti. E’ proprio qui che la probabilità di scoprire qualche fenomeno particolare aumenta di molto: una nuova tempesta di sabbia su Marte, una mega tempesta su Saturno, una gigantesca nube di ammoniaca che fa sparire un’intera banda equatoriale di Giove… Sappiamo infatti che la legge di Murphy è impietosa: se qualcosa di spettacolare deve succedere nel cielo, lo farà di certo di giorno. E noi, allora, la aggiriamo osservando anche quando nessuno pensa che si possa fare!
  • Sempre per la legge di Murphy, se una grande cometa, con una magnitudine di -7. si rendesse visibile a 15-20 gradi dall’orizzonte e in una posizione dell’eclittica che rendesse impossibile osservarla dal nostro emisfero (in pratica tutte le grandi comete degli ultimi 19 anni!) l’alternativa sarebbe volare in Australia o fare fotografie di giorno. E noi le faremo (anche se un viaggio in Australia è senza dubbio più interessante)!

Insomma, oltre al lato ludico/personale c’è un’oggettiva prospettiva scientifica, che interessa di sicuro gli osservatori e gli astroimager più esperti: osservare di giorno, visto che la nostra tecnologia lo consente, è di certo qualcosa da provare prima o poi, anche se con le dovute precauzioni.

Perché osservare e fotografare di giorno? Ecco un motivo: occultazione Luna-Venere del 16 giugno 2007 alle ore 15 locali. Se avessimo aspettato il calar del Sole ce la saremmo persa!

Perché osservare e fotografare di giorno? Ecco un motivo: occultazione Luna-Venere del 16 giugno 2007 alle ore 15 locali. Se avessimo aspettato il calar del Sole ce la saremmo persa!

 

Luna e Venere, sempre presenti a occhio nudo

A molti sarà di sicuro già capitato di osservare la Luna a occhio nudo, anche di giorno, senza particolari difficoltà. In effetti il nostro satellite si può vedere fino a poche decine di gradi di distanza dal Sole. Osservato al telescopio, soprattutto nelle giornate molto limpide, si mostra già interessante e ricco di particolari.

C’è però un altro corpo celeste che è visibile senza ausilio ottico, in pieno giorno: Venere. Il fatto che non l’abbiamo mai visto non è un indicatore affidabile sulla sua reale osservabilità. Con una magnitudine media di circa -4.5, in effetti, Venere è l’unico oggetto di apparenza stellare che può essere visto a occhio nudo di giorno, a patto che sia ad almeno 20° di distanza dal Sole. Un cielo limpido, che si mostra con una marcata tonalità azzurra, aiuta molto nell’impresa di scovare il pianeta a occhio nudo, ma in realtà la parte più difficile dell’impresa coinvolge il nostro sistema di interpretazione delle immagini, ovvero il cervello. Trovare un punto luminoso su uno sfondo brillante e circa uniforme è un’operazione che il nostro occhio, a livello ottico, è perfettamente in grado di fare, ma il nostro computer biologico fatica a elaborare nella maniera corretta i dati. Il risultato è spesso sorprendente: se non sappiamo bene dove guardare potremmo cercare il pianeta di giorno per ore senza vederlo. Se invece sappiamo dove dirigere il nostro sguardo, con un errore di circa 1-2° al massimo, allora il pianeta diventa evidente perché è sempre piuttosto contrastato rispetto al fondo cielo. All’improvviso, dopo tanto cercare, ci apparirà in quella spessa coperta azzurra un piccolo buco da cui filtra la luce puntiforme del pianeta a noi più vicino:“Come ho fatto a non vederlo prima?” E’ sempre questa la domanda che ci si pone con estrema sorpresa e molta soddisfazione per aver visto una “stella” nel cielo illuminato dal Sole. Per identificarlo con meno difficoltà è sempre opportuno nascondere il Sole dietro un ostacolo naturale o artificiale (una collina, degli alberi, una casa…) e scandagliare bene la zona di cielo in cui dovrebbe trovarsi (aiutiamoci con un software planetario).

Venere di giorno si può rintracciare con facilità anche a occhio nudo, se sappiamo bene dove guardare. Riuscite a trovarlo in questa foto scattata con un cellulare?

Venere di giorno si può rintracciare con facilità anche a occhio nudo, se sappiamo bene dove guardare. Riuscite a trovarlo in questa foto scattata con un cellulare?

Al telescopio, Venere, osservato di giorno, dà il meglio di sé, per due motivi:

  • Possiamo ammirarlo quando è molto alto sull’orizzonte, senza aspettare il tramonto o l’alba, quindi, se abbiamo l’accortezza di nascondere il Sole dietro un ostacolo naturale ed evitare che scaldi il tubo ottico, la turbolenza sarà sempre minore e la visione più dettagliata;
  • Il pianeta è molto luminoso. Se lo puntiamo con il cielo già scuro del crepuscolo, la sua luminosità inganna l’esposimetro del nostro sistema visivo, che ce lo mostrerà sempre troppo brillante, come se fosse una fotografia “bruciata”. Il risultato? Perdita di ogni tipo di dettaglio e un certo fastidio nella visione. Di giorno, invece, grazie al contrasto molto più basso tra il fondo cielo e Venere, il cervello applica la giusta esposizione e il pianeta non è mai sovraesposto. L’osservazione è molto più rilassante e spettacolare, perché potremo scorgere con relativa facilità alcune sfumature nella spessa atmosfera venusiana, anche senza l’uso di filtri colorati o grossi strumenti. Personalmente tutte le migliori osservazioni e fotografie di Venere le ho fatte di giorno, tra le 12 e le 16 locali.
Venere mostra molti dettagli, sia in visuale che, soprattutto, in fotografia. Il segreto? Osservare di giorno, quando il pianeta è alto nel cielo.

Venere mostra molti dettagli, sia in visuale che, soprattutto, in fotografia. Il segreto? Osservare di giorno, quando il pianeta è alto nel cielo.

 

Mercurio e oltre: a volte meglio di giorno, ma solo per i più esperti

Quanto scriverò da questo punto in poi prevede delle operazioni delicate, soprattutto per il puntamento, che devono essere fatte solo da persone ormai esperte di osservazioni e fotografia. La tecnica, infatti, spesso implica di fare un salto prima sul Sole, con tutti i rischi che ne conseguono se non si usa un filtro solare e molta attenzione. Leggere quindi bene quanto segue, se vogliamo proseguire con il nostro tour del cielo diurno.

 

Purtroppo a occhio nudo il gioco è già finito: il giro turistico del Cosmo termina con l’emozione e la sfida di trovare Venere, ma con un telescopio possiamo esplorare l’invisibile e fare altre spettacolari osservazioni.

Le particolari condizioni in cui si presenta Venere, ovvero un pianeta che non si allontana mai dal Sole per più di poche decine di gradi, sono ancora più esasperate per Mercurio. Per il più piccolo pianeta del Sistema Solare non abbiamo molta scelta: le osservazioni di giorno sono le UNICHE che danno qualche soddisfazione. E’ inutile cercare di fare i testardi e aspettare anni per trovare un buon seeing e trasparenza all’alba o al tramonto, con il Sole sotto l’orizzonte e il pianeta ben visibile a occhio nudo: non avremo mai una visione nitida come di giorno. Questo vale ancora di più se l’obiettivo è fare foto.

Mercurio di giorno mostra tenui chiaroscuri che non vedremo mai al crepuscolo

Mercurio di giorno mostra tenui chiaroscuri che non vedremo mai al crepuscolo

Più facile e spettacolare di Mercurio, Marte è un altro soggetto ghiotto per fare osservazioni. Quando la sua separazione è maggiore di 60° dal Sole, il pianeta rosso ha ancora una discreta luminosità e diametro angolare per mostrare dettagli. Grazie alla sua colorazione rossastra, che contrasta in modo netto con l’azzurro del cielo, marte_giornol’osservazione di Marte di giorno può essere spettacolare, soprattutto quando il Sole si sta avviando verso il tramonto (o poco dopo l’alba). In un certo senso, per chi non è abituato a osservare i pianeti, l’esperienza diurna migliora la visione perché diminuisce i contrasti e impedisce, proprio come accade per Venere, di avere un’immagine troppo luminosa, quindi sovraesposta e povera di particolari. Il rapido tempo di esposizione del nostro occhio, inoltre, ha anche il potere di congelare il seeing molto meglio rispetto a quanto accade di notte, con la visione notturna e un tempo di esposizione che viene incrementato automaticamente dal nostro cervello. In un certo senso ed entro determinati limiti, di giorno la visione migliora anche a seguito di questo fenomeno, lo stesso per cui gli astroimager planetari tendono a fare esposizioni più brevi possibili per congelare il seeing.

Con Giove iniziamo invece ad avere qualche difficoltà. Visibile solo oltre i 45° di elongazione, si presenta spesso come un disco quasi trasparente, ma ricco comunque di contrasti, anche se non riusciremo a vedere i più minuti dettagli della sua atmosfera. Meglio non esagerare con gli ingrandimenti, almeno all’inizio, per non perderlo tra la luce del cielo.

Per Saturno, invece, le cose cambiano e trovarlo rappresenta quasi una sfida, che è facile da vincere con il pianeta oltre i 60° di separazione dal Sole, un cielo molto trasparente e la nostra stella prossima all’orizzonte. Anche in questo caso meglio iniziare con ingrandimenti modesti per trovarlo: circa 50-100X al massimo e poi, se serve, aumentarli (di poco).

Urano e, ancora peggio, Nettuno, dovrebbero essere off limits, ma non si sa mai: con un cielo limpido di montagna, una separazione di almeno 90°, un filtro polarizzatore e un buon occhio, potremo riuscire a scorgere Urano: nessuna speranza, invece, per Nettuno.

Se vogliamo andare oltre i pianeti, possiamo fare un bel tour delle stelle brillanti: snobbate di notte perché poco interessanti (a ragione), di giorno diventano delle gemme da scovare in un mare d’azzurro, come un prezioso tesoro. Ecco allora che non avremo alcun problema nel puntare Sirio, Capella, Altair, Deneb, Vega, Betelgeuse, Antares e Aldebaran. Unica richiesta: cielo terso e almeno 45° di separazione dal Sole!

Le stelle si possono vedere anche di giorno! Ma è in fotografia che le cose migliorano e anche di molto

Le stelle si possono vedere anche di giorno! Ma è in fotografia che le cose migliorano e anche di molto

 

Come puntare di giorno

Prima di uscire con il Sole alto e cominciare a osservare stelle e pianeti, è meglio dare qualche consiglio utile per fare una cosa che di notte è semplice, ma di giorno un po’ meno: a parte la Luna e Venere, nessun altro oggetto si vede a occhio nudo, spesso nemmeno con un piccolo cercatore, quindi: come facciamo a puntare qualcosa che non possiamo vedere finché non è nel campo dell’oculare? Si potrebbe dire: con il puntamento automatico! La risposta è sì, ma con qualche differenza rispetto alla notte. Di giorno, infatti, non possiamo fare l’allineamento della montatura, perché le stelle non si vedono: come fare?

Semplice: dobbiamo connettere la nostra montatura al computer, bypassando la pulsantiera e interfacciandola con un software planetario, come Cartes du ciel. Grazie ai driver Ascom, questa soluzione è abbastanza semplice e molti fotografi già la usano per curare le sessioni di ripresa notturna. Controllando la montatura con il planetario possiamo fare una cosa che molte pulsantiere non permettono: puntare un oggetto celeste ben visibile, sincronizzarla sulle sue coordinate e poi spostarci nella direzione in cui vogliamo osservare l’invisibile.

L’unico oggetto celeste sempre presente, a parte qualche volta la Luna, è il Sole ma è anche il più pericoloso. Per puntare tutti gli altri corpi celesti di giorno occorre quindi quasi sempre sincronizzare la nostra montatura sul Sole, puntandolo a mano. Come ben sappiamo, è assolutamente fondamentale evitare che la luce del Sole entri senza essere filtrata nel telescopio e nel cercatore. Quindi, il primo passo da fare è preparare il setup come se dovessimo osservare il Sole: coprire il cercatore e inserire di fronte l’obiettivo del telescopio un filtro solare sicuro, come l’Astrosolar. Puntiamo la nostra stella con il metodo dell’ombra, poi centriamola osservando dall’oculare (con il telescopio che ha il filtro solare ben saldo e sicuro!). Sincronizziamo la montatura e poi diciamo al planetario (o alla pulsantiera, se lo permette) di andare dove vogliamo: Mercurio, Venere, Marte, qualche stella… È importante scegliere soggetti distanti almeno 15 gradi dal chiarore solare per evitare che parte della sua luce entri nello strumento (e per vedere qualcosa!). Una volta che il telescopio si è spostato verso la destinazione, possiamo togliere il filtro solare e scoprire il cercatore. Con una buona vista e un cercatore da almeno 50 mm di diametro, quasi tutti i soggetti (tranne Saturno) dovrebbero essere visibili attraverso le sue lenti, una cosa molto comoda per poter effettuare un preciso centraggio.

Il successo del puntamento dipende in modo critico dal perfetto stazionamento della montatura equatoriale (non confondete lo stazionamento con l’allineamento del GOTO!), che può essere fatto solo di notte. Ecco quindi che sarebbe meglio lasciare il telescopio montato dalla sera prima e pronto anche al nostro tour diurno.

Se vogliamo spostarci verso oggetti molto distanti è meglio andare per piccoli passi: puntiamo prima un corpo celeste luminoso, come Venere, per sincronizzare di nuovo la montatura e poi spostiamoci verso la destinazione: meglio non fare spostamenti superiori a 40 gradi perché il puntamento non sarà mai precisissimo.

Una cosa fondamentale riguarda poi la messa a fuoco: di giorno, anche per oggetti luminosi come Venere, se il telescopio non è già vicino al punto di fuoco potremo non vedere la sagoma sfocata del pianeta, anche se questo è al centro del campo: assicuriamoci quindi di aver fatto una buona messa a fuoco prima sul Sole e di non cambiare oculare, altrimenti dovremo armarci di pazienza e muovere il fuoco fino a trovare l’oggetto, che sarà visibile solo quando saremo quasi al punto di fuoco. Una cosa simile si deve fare se vogliamo fare foto: facciamo il fuoco prima sul Sole e a una focale non troppo elevata (meglio al fuoco diretto), così saremo sicuri che se il corpo celeste verrà puntato lo vedremo.

 

Qualche consiglio per le riprese fotografiche

Se vogliamo usare il nostro occhio per osservare, dobbiamo accontentarci di scegliere solo le giornate con il cielo più terso, in modo che i contrasti aumentino al punto da garantire osservazioni molto piacevoli, se non migliori rispetto alla notte. Se invece siamo interessati a fare riprese in alta risoluzione, e in generale a capire quanto in profondità si può vedere anche con il Sole sopra l’orizzonte, allora le cose cambiano molto e potremo restare sorpresi di quanto sia possibile fare. Per capire il trucco che c’è alla base di proficue riprese (non più osservazioni ma fotografie!) diurne, dobbiamo riproporre una domanda alla quale non ho ancora dato risposta: c’è modo, restando qui sulla Terra, e senza usare un radiotelescopio, di osservare il cielo di giorno? Fino a questo momento abbiamo visto che non serve nulla per osservare i principali pianeti, né le stelle, perché anche se non li vediamo in modo spettacolare come di notte, questi in realtà ci sono e si possono osservare al telescopio, se non addirittura a occhio nudo. Tuttavia, grazie alla grande sensibilità dei sensori digitali, possiamo davvero fare qualcosa per migliorare di molto la situazione in fotografia.

La risposta alla domanda ne prevede allora un’altra: di che colore è il cielo di giorno? Se non abitiamo in pianura Padana, la risposta non ammette eccezioni: azzurro! Cosa vuol dire, a livello più fisico, questo? Che l’aria che respiriamo preferisce diffondere in ogni direzione più la luce azzurra rispetto a quella rossa, visto che quella solare è in realtà bianca e così sarebbe dovuto apparire il cielo se tutti i colori fossero stati diffusi allo stesso modo.

Senza entrare in profonde spiegazioni fisiche, il principio alla base della diffusione della luce da parte di molecole di gas è descritto da un processo chiamato diffusione di Rayleigh. Per i nostri scopi ci basta solo un dato, che è la conferma quantitativa della nostra semplice osservazione sul colore del cielo: la percentuale di luce diffusa è inversamente proporzionale alla quarta potenza della lunghezza d’onda. In parole semplici, all’aumentare della lunghezza d’onda della luce diminuisce drasticamente la percentuale che viene diffusa dall’aria. Ecco quindi che la luce blu viene diffusa circa 16 volte più di quella del vicino infrarosso, che ha una lunghezza d’onda circa doppia e perché per le onde radio giorno o notte non fa alcuna differenza.

La diffusione di Rayleigh in funzione della lunghezza d'onda spiega perché il cielo è azzurro e rappresenta un'interessante scappatoia per fare ottime fotografie diurne.

La diffusione di Rayleigh in funzione della lunghezza d’onda spiega perché il cielo è azzurro e rappresenta un’interessante scappatoia per fare ottime fotografie diurne.

Eureka! Abbiamo trovato il modo per fare fotografie di giorno di soggetti brillanti, come se il Sole quasi non ci fosse: basta usare un filtro passa infrarosso. Più grande è la lunghezza d’onda utilizzata, maggiore sarà il contrasto tra il fondo cielo e il corpo celeste. Volete una prova? Guardate la seguente immagine che ritrae Giove ripreso allo stesso orario con diversi filtri:

All'aumentare della lunghezza d'onda diminuisce la luminosità del fondo cielo e i corpi celesti, come in questo caso Giove, emergono in modo sempre più netto.

All’aumentare della lunghezza d’onda diminuisce la luminosità del fondo cielo e i corpi celesti, come in questo caso Giove, emergono in modo sempre più netto.

Per poter sfruttare questo trucco ci serve un sensore monocromatico, o al limite una reflex full spectrum, ovvero modificata per renderla sensibile anche all’infrarosso. Questi dispositivi sono sensibili, sia pur in forma ridotta, fino a circa 1100 nm, una regione molto interessante per i nostri scopi. Ottime sono le camere planetarie monocromatiche, spesso usate anche per l’autoguida, come la sempre verde ASI 120MM. Con questi sensori possiamo usare filtri passa infrarosso da 800 e persino 1000 nm (1 micron). In questa zona poco esplorata del vicino infrarosso, il cielo diventa talmente scuro che non solo possiamo fare fotografie alla Luna, Venere, Mercurio, Marte, Giove e Saturno come se fosse notte, ma è addirittura possibile riprendere corpi celesti che nessuno si sarebbe aspettato: i quattro principali satelliti di Giove, ad esempio, tutte le stelle brillanti fino a magnitudine 5-6 e persino oggetti spettacolari come brillanti comete.

Ecco allora che in questo modo, anche con strumenti modesti, a partire da 8-10 centimetri, il cielo diurno mostra tutto ciò che ai nostri occhi apparirebbe ben visibile di notte: fantastico, vero?

satelliti_giove_giorno

In conclusione di un post piuttosto lungo, non mi resta che lanciare un paio di sfide: qual è il corpo celeste più debole che è possibile osservare o fotografare con il Sole sopra l’orizzonte? È possibile ottenere un’immagine di un soggetto deep sky brillante, ad esempio le Pleiadi, o la nebulosa di Orione, di giorno? Per queste imprese i miei consigli sono semplici: 1) Cielo terso come mai si vede dalla pianura; 2) oggetto alto sull’orizzonte almeno 30° e più lontano possibile dal Sole, 3) Sole in prossimità del tramonto o dell’alba.

Riprese diurne estreme: la cometa McNaught del gennaio 2007 a 15 ° dal Sole e con una magnitudine di circa -7, ripresa con un telescopio da 25 cm diaframmato a 3 cm e filtro IR da 1000 nm. D'ora in poi non ci perderemo più un raro evento astronomico solo perché si verifica di giorno, alla faccia della legge di Murphy!

Riprese diurne estreme: la cometa McNaught del gennaio 2007 a 15 ° dal Sole e con una magnitudine di circa -7, ripresa con un telescopio da 25 cm diaframmato a 5 cm e filtro IR da 1000 nm. D’ora in poi non ci perderemo più un raro evento astronomico solo perché si verifica di giorno, alla faccia della legge di Murphy!

 

Per il momento i corpi celesti più deboli che ho ripreso sono i satelliti di Giove, che hanno luminosità inferiori a quella delle stelle principali delle Pleiadi o del cuore della nebulosa di Orione: questi due, quindi, sono soggetti ben alla portata della nostra voglia di astronomia anche di giorno. La caccia è aperta!

 

P.S. Non vale scattare foto deep sky durante un’eclisse totale di Sole!

collimazione_newton_star_test

Collimazione facile e precisa di un Newton

Collimazione facile e precisa di un Newton

Nella grande panoramica dei telescopi, il Newton è da sempre considerato uno schema ottico che offre una buona apertura in rapporto al costo, grazie alla facilità nella costruzione, rispetto ad altri schemi (rifrattori, SC, etc).
Però la bestia nera della maggior parte degli astrofili è sempre lei: la collimazione.

“Il Newton è bello, tanta apertura, veloce anche in foto, universale, si, ma….”

Ma.
Ma collimiamolo facilmente! Da anni si legge su internet della collimazione dei newtoniani usando la barlow abbinata al collimatore laser. Personalmente ho sperimentato a fondo una combinazione delle 2 cose che vorrei proporvi, senza imbarcarsi in costosi collimatori dalle mille funzionalità, perché a volte si può avere molto con poco!

Setup usato:
Collimatore laser TSLA: http://www.teleskop-express.it/collimazione/226-tsla-ts-optics.html
Lente di barlow…qualsiasi! Io ne ho usata una molto economica: http://www.teleskop-express.it/barlow-e-riduttori/170-tsb21-ts-optics.html

Se poi proprio vogliamo giocarcela ancora meglio, sarebbe fantastico modificare il Newton con uno dei kit di collimazione Astronomy Expert ora disponibili per i GSO (in arrivo anche quelli Skywatcher a fine ottobre!)
http://www.teleskop-express.it/collimazione/2560-ae-collimation-tool-per-newton-gso-passo-metrico-astronomy-expert.html

collimatore per newton e barlow per collimazione telescopio newton

 

Step 1: collimazione del secondario

Iniziamo a collimare il secondario come sempre: inseriamo solo il laser nel focheggiatore e muoviamo le 3 vitine di regolazione del secondario, in modo portare il puntino rosso del laser al centro del bollino bianco incollato sul primario

collimazione_secondario_newton

Bene, ora siamo pronti per la collimazione del primario:

 

Step 2: collimazione del primario

Non tocchiamo il laser (assicuriamoci di averlo montato con la finestrella che guardi dalla nostra parte, mentre siamo posizionati sulla cella del primario) e dobbiamo operare come segue:

Sbloccare le viti di blocco del vostro newton, cella del primario (fare riferimento al manuale di istruzioni..o a noi!)
Portare il raggio laser verso il foro centrale di ritorno, come da immagini, usando le viti di collimazione della cella del primario (come prima, fare riferimento alle istruzioni o a noi per un aiuto)

collimazione_primario_1_newton

collimazione_primario_2_newton

A questo punto siete abbastanza collimati, ma non perfettamente, perché il laser ed i vari riduttori da 2” a 31,8mm hanno delle tolleranze meccaniche tra di loro che rendono la collimazione con il laser, sul primario, buona, ma non perfetta.

Raggiungiamo la perfezione!

 

Step 3: la collimazione fine del primario

Adesso rimuoviamo il laser e montiamo la nostra barlow sul telescopio, inserendo poi nuovamente il laser come se fosse un oculare. Accendiamo il laser e dovremmo vedere qualcosa di molto interessante.
La barlow ha l’effetto di “spalmare” il fascio del laser, che andando a proiettarsi sull’anellino bianco che va ad indicare il centro del primario, produce un’ombra. Essendo circolare il nostro bollino adesivo sul primario, il cerchio avrà anche un suo centro..ovviamente!
Guardate la figura: si vede la macchia del laser, con l’ombra del bollino del primario. Notate anche che al centro dell’ombra ci sono 3 cerchietti concentrici di diffrazione che vanno ad indicare il centro della nostra riflessione (se il bollino è posizionato bene è anche il centro del primario).

Dobbiamo portare questi cerchietti nel centro del foro di ritorno, usando le viti di collimazione del primario, in modo da avere una collimazione a prova di star test!

collimazione_primario_3_newton

notate come non è detto che l’ombra sia concentrica al foro, dalle mie esperienze ho potuto notare come è sempre meglio fare riferimento ai cerchietti centrali di diffrazione per ottenere un’ottima collimazione.

collimazione_primario_4_newton

Adesso facciamo la prova del nove, nel nostro caso posizionando il newton sul nostro banco ottico e..vediamo come va!

Come potete vedere dall’immagine, il telescopio è veramente molto ben collimato, semplicemente guardando il laser e le ombre di ritorno, senza andare ad impazzire con altri sistemi più o meno difficili o costosi.

collimazione_newton_star_test

ATTENZIONE: i giochi meccanici nella chiusura dei raccordi e del laser possono determinare un disassamento dello stesso con l’asse ottico del telescopio. Come potete vedere dalle immagini, nel newton di prova c’è un portaoculari classico con 2 viti di blocco. Con alcuni accorgimenti possiamo ottenere buoni risultati, senza dover andare ad adoperare dei sistemi di chiusura autocentranti (che avrebbero anche cattive ripercussioni sul backfocus disponibile).

Il riduttore da 2” a 31,8mm posizionatelo in modo che la vite vada tra le 2 del portaoculari da 2” del focheggiatore
Prima di serrare il riduttore da 31,8mm, con la mano, tenetelo per premuto sul portaoculari da 2” del focheggiatore, in modo da garantire la massima planarità
Quando inserire il laser e la barlow, il discorso è lo stesso: premeteli sempre nel portaoculari

Cosa succede se collimo bene, ma poi vedo che le figure di intra ed extra sono diverse? Avete il focheggiatore che non è montato in modo parallelo all’asse ottico!
Si può rimediare? Certamente, però è una bella rottura…soluzione? Semplice: se fate foto collimate con il focheggiatore in posizione di messa a fuoco, se fate visuale fatelo con il focheggiatore estratto nel punto di fuoco dato dall’oculare più potente che avete. In questo modo andate ad ottimizzare la collimazione nella posizione di fuoco durante l’utilizzo, avendo così la miglior resa possibile.

Se avete qualche domanda, dubbio, non esitate a scrivermi: rc@teleskop-express.it

I Newton odierni sono strumenti ottimi, che costano poco e possono dare tanto, usiamoli nel modo giusto!

IC1396

Test TS APO 71 Q

Un nostro affezionato cliente, Mauro Maggioni, ha fatto un bellissimo test sul TSAPO71Q in combinata con lo Star Adventurer e ci ha permesso di riprodurlo sul nostro blog: GRAZIE MAURO!!!!

Visitate anche il suo bellissimo sito web: http://www.skattodinamico.altervista.org/index.html
Ecco la sua prova:

 SKY ADVENTURER & TS71Q
… accoppiata perfetta …

… la malattia della “strumentite”, che affligge molti astrofili, mi porta spesso a “saltellare”  tra i vari siti di shopping on-line per cercare qualche novità …

questa volta la mia attenzione cade su uno strumento piccolo, portatile e dalle caratteristiche ottiche davvero raffinate, che sulla carta si presenta come uno strumento da favola. Una combinazione di 5 lenti per un campo spianato sul formato Full Frame … WOW: il TS71Q 🙂

Per dettagli tecnici fate riferimento al sito TS ITALIA: http://www.teleskop-express.it/apocromatici-ota/1598-ts-apo-71q-ts-optics.html

Provo a contattare l’Oracolo di Delfi (che nel mondo dell’astrofilia moderna risponde al nome di Lorenzo Comolli) e anche lui apprezza le notevoli caratteristiche dello strumento, ma, non avendolo mai testato, mi dice che l’unica è metterlo alla ‘frusta’ sul campo.

Ci penso per qualche mese e intanto faccio un po’ di cassa vendendo un po’ di strumentazione (eh già, a volte la “strumentite” mi porta a prendere oggetti che poi finisco con l’usare pochissimo …)

Contatto quindi Riccardo Cappellaro della TE Italia che, con notevole cortesia e competenza, soddisfa la mia richiesta di avere qualche immagine raw fatta con il telescopio in modo da poterla analizzare.

Le immagini sono davvero interessanti e decido di passare all’acquisto.

Nel frattempo avevo acquistato anche un modello di Star Adventurer con lo scopo di realizzare qualche time-lapses.

Per caso una sera, giocando con gli strumenti, provo a montare il TS71Q sullo Star Adventurer e mi rendo conto che lo strumento viene retto egregiamente. La fantasia continua a dilagare e inizio a ipotizzare l’uso dello Star Adventurer per fare pose a largo campo; con una focale di poco più di 350mm e la sony A7s potrei spingermi a pose di un paio di minuti. Oltretutto la presenza della porta di autoguida mi convince che la cosa sia fattibile.

Mi serve però un cavalletto più stabile di quello da “fotografia” diurna e mi dedico per qualche tempo al tuning di un cavalletto SW aggiungendogli una colonna in carbonio (leggera e robusta).

Ultimata la colonna monto tutta la configurazione e, come telescopio guida, riciclo un obiettivo da 400mm F5,6, molto leggero, installato su una testa micrometrica.

Ed ecco il risultato: setup pratico, leggero e dalle notevoli potenzialità … non mi resta che testare il tutto.

Quale migliore occasione del cielo di Tatti, presso Villa Tatti, nella Maremma toscana, in provincia di Grosseto…



La nottata è splendida e dopo uno stazionamento abbastanza preciso inizio la sessione di autoguida …

Fantastico! In assenza di vento la guida in AR resta all’interno del +/-1 e la deriva in DEC mi permette pose da 2 minuti senza problemi. Qualche folata evidenzia la sensibilità dello strumento con picchi che salgono anche a +/-2, ma lo Star Adventurer corregge correttamente e le pose non subiscono errori.

La guida è stata eseguita con una MZ5 e PHD.

Ora si passa all’analisi dell’immagine ripresa dal TS71Q. Attendo i 2 minuti di esposizione sulla IC1396 e  resto davvero soddisfatto: immagine pulita con stelle puntiformi fino ai bordi. Ho confrontato l’immagine con il TAKA FS102, non è allo stesso livello come incisione (non ne dubitavo…il Taka FS102 non ha rivali), ma lo strumento mi soddisfa.

porzione del fotogramma in alto a SX

Il flat è necessario in quanto ai bordi si nota una leggera vignettatura

La serata continua in compagnia di qualche cinghiale ( che fa capolino tra i boschi intorno a Villa Tatti) e dopo una integrazione di circa 2 ore il risultato è il seguente:

IC1396 realizzata con TS71Q – SKY ADVENTURER

pose da 2min per
un’integrazione totale di 2h.

3 dark – 5 flat – 5 darkflat – 9 bias

Sony A7s modificata

Autoguida con obiettivo 400mm e PHD

Quindi se cercate un setup pratico e amate le foto a grande campo non fatevi sfuggire questa coppia di strumenti.

Ho creato anche una versione video con i time lapses ripresi durante il test … buona visione …


https://youtu.be/mDHOTcTH5ZM


Per dettagli tecnici fate riferimento al sito TS ITALIA:

http://www.teleskop-express.it/apocromatici-ota/1598-ts-apo-71q-ts-optics.html

 

Ingrandire molto serve solo per Luna, pianeti e stelle doppie, ma occhio a non esagerare altrimenti si avrà l'effetto simile a quello della precedente fotografia.

La (vera) potenza di un telescopio

“Che bello questo telescopio, quanto ingrandisce?”

È questa la domanda che spesso mi fanno durante le serate pubbliche, ed è la stessa domanda che feci io al mio ottico di fiducia quando dovetti scegliere il mio primo strumento, nel lontano 1993.

Se la domanda è sensata, la risposta è spesso spiazzante, soprattutto nelle sfumature più ironiche, che possono suonare più o meno così: “In teoria anche un milione di volte”, oppure: “Niente, se non ci metti l’oculare”, o ancora: “Infinito!”. Benché ironiche, queste tre risposte raccontano a modo loro i pezzi di una realtà che spesso spiazza chi non conosce ancora il mondo dell’astronomia amatoriale: l’ingrandimento di uno strumento può essere piccolo o grande a piacere, perché dipende dagli oculari che si usano, ma l’immagine che otterremo non sarà sempre nitida e luminosa.

A livello prettamente matematico, l’ingrandimento di uno strumento è dato dal rapporto tra la focale del telescopio, che è fissa, e la focale di un accessorio, che si chiama oculare e che serve per rendere visibile l’immagine all’occhio. Di oculari ce ne sono moltissimi, dalla focale di 2 millimetri a 40 e più millimetri. Inoltre, altri accessori, chiamati lenti di Barlow, possono raddoppiare, triplicare o addirittura quintuplicare gli ingrandimenti, a parità di oculare. Di conseguenza, un telescopio da 1000 mm di focale può lavorare da 10 a 2000 ingrandimenti o più, se inseriamo 2 lenti di Barlow da 5X. “Caspita, a 10 mila ingrandimenti riuscirò a vedere persino la bandiera lasciata dagli astronauti sulla Luna!” No, purtroppo le cose non stanno così. Io, a 10 anni, quando iniziai a fare astronomia non lo sapevo, ma presto mi resi conto di tutto ciò quando comprai un oculare da 4 mm di focale e una lente di Barlow 2X, superando i 400 ingrandimenti con il mio piccolo rifrattore da 90 mm di diametro e vedendo praticamente nulla persino sulla brillante Luna.

L’ingrandimento di ogni telescopio non rappresenta una misura della sua “potenza”, piuttosto è solo il mezzo con cui cerchiamo di sfruttare al massimo le sue prestazioni, che sono fissate dal diametro dell’obiettivo e dalla qualità con cui sono stati lavorati lenti e specchi.

Le quantità fondamentali di uno strumento astronomico sono la capacità di raccolta della luce, che permette di osservare oggetti più deboli di quelli visibili a occhio nudo, e il potere risolutivo, ovvero la capacità di mostrare piccoli dettagli degli oggetti astronomici. Entrambe queste due quantità dipendono prima di tutto da quanto è largo il telescopio, cioè dal diametro delle lenti o dello specchio primario. Questi elementi ottici devono naturalmente essere lavorati in modo preciso, affinché non ne vengano intaccate le prestazioni determinate dalle leggi della fisica. Ecco, allora, perché non è possibile costruire un telescopio con una semplice lente di ingrandimento o con uno specchio da barba che ingrandisce le immagini: la loro lavorazione è di gran lunga insufficiente per fare osservazioni anche solo decenti.

Se la qualità con cui sono lavorati gli elementi è buona, il diametro rappresenta l’unico (o quasi) elemento per valutare la potenza di un telescopio, perché è questo che determina il potere risolutivo e quanta luce posso raccogliere dagli oggetti deboli. Attraverso l’ingrandimento si cercherà di arrivare al limite delle possibilità del telescopio, ma non potremo mai aumentarne le prestazioni oltre quelle determinate dal suo diametro (e qualità ottica).

Se ora inseriamo nel contesto anche gli oggetti astronomici che ci piacerebbe osservare, si capisce anche un’altra cosa che a me, tanto tempo fa, stupì non poco: tranne i pianeti, tutti i più brillanti oggetti del cielo profondo, ovvero ammassi stellari, nebulose e galassie, hanno un’estensione angolare simile, o addirittura superiore, a quella della Luna piena vista a occhio nudo! Il problema, quindi, nella grande maggioranza dei casi non è ingrandire l’oggetto per osservarlo meglio, ma riuscire a trovare un ingrandimento, di solito modesto, tale per cui entra nel campo e allo stesso tempo la sua luce non viene diluita così tanto da risultare quasi invisibile.

Quasi tutti gli oggetti del cielo profondo vengono osservati al meglio tra i 30 e i 150 ingrandimenti, a prescindere dal diametro del telescopio. La loro debolezza intrinseca rende quasi sempre vano ogni tentativo di osservazione in alta risoluzione, cercando dettagli piccolissimi che non potremmo mai vedere.

Solo con l’osservazione di pianeti, Luna e stelle doppie si possono aumentare gli ingrandimenti fino a cercare di sfruttare tutto il potere risolutivo dello strumento. Una regola empirica vuole che, per osservare tutti i minuti dettagli di oggetti brillanti, l’ingrandimento massimo debba essere compreso tra le 2 e le 2,5 volte il diametro del telescopio espresso in millimetri. Ecco allora che un telescopio da 100 mm di diametro può sfruttare con profitto ingrandimenti fino a 200-250 volte e solo su soggetti brillanti che mostrano dettagli ad alto contrasto e luminosità (e nelle serate “buone”!). Questo ingrandimento è sufficiente per sfruttare il potere risolutivo dello strumento. Continuare a ingrandire è possibile ma l’effetto è simile a quello che si ottiene ingrandendo a dismisura una fotografia sul computer.

L’esempio con una fotografia calza molto bene e fa capire alla perfezione la situazione (rima fatta!). Immaginiamo di avere un’immagine con una risoluzione superiore a quella dello schermo; se vogliamo vedere tutto il campo ripreso dobbiamo ridurne le dimensioni: quest’osservazione a basso ingrandimento ci fa percepire meno dettagli piccoli, perché anche se ci sono il nostro occhio non li riesce a vedere. Ingrandendo l’immagine perdiamo la visione d’insieme ma possiamo arrivare a vedere sempre maggiori dettagli. Alle dimensioni originali otteniamo di fatto quello che per un telescopio è il massimo ingrandimento utile: stiamo osservando una piccola porzione dell’immagine ma riusciamo ad ammirare tutti i piccoli dettagli che prima non potevamo percepire (sebbene fossero presenti). Se continuiamo a ingrandire ben oltre le dimensioni originali non otteniamo alcun miglioramento della visione, perché abbiamo già visto tutta la risoluzione catturata dalla foto, che è stata fissata al momento dello scatto e che nessun ingrandimento può alterare.

 

Ingrandire un oggetto è come fare zoom su una fotografia: quando superiamo un certo ingrandimento l'immagine si sfoca e non ci restituisce più dettagli.

Ingrandire un oggetto è come fare zoom su una fotografia: quando superiamo un certo ingrandimento l’immagine si sfoca e non ci restituisce più dettagli.

 

Ingrandire molto serve solo per Luna, pianeti e stelle doppie, ma occhio a non esagerare altrimenti si avrà l'effetto simile a quello della precedente fotografia.

Ingrandire molto serve solo per Luna, pianeti e stelle doppie, ma occhio a non esagerare altrimenti si avrà l’effetto simile a quello della precedente fotografia.

Ecco allora che abbiamo imparato una cosa molto importante, che è fondamentale per fare il primo passo verso l’astronomia amatoriale e capire anche di chi ci si può fidare quando vogliamo dei consigli sull’acquisto di un telescopio. Il mio ottico, tanto tempo fa, quando gli feci quella domanda sugli ingrandimenti mi consigliò un telescopio che poteva arrivare a quasi 600 volte, invece di un altro che non avrebbe superato i 300 ingrandimenti. Entrambi erano rifrattori da 90 mm di diametro, solo che uno aveva una focale di 500 mm e l’altro di un metro. Secondo voi, ora che sapete come stanno le cose, avrei dovuto fidarmi della sua competenza astronomica?