winjupos_2009-2017_scheda_dofter

Fotografiamo la superficie di Venere!

Venere sta dominando queste serate di fine inverno e dominerà le albe di tutta la primavera, quindi non possiamo non parlare di questo faro del cielo. Non sarà però il solito post che ci insegna a osservare le solite fasi di Venere, anzi, tutt’altro!

Il nostro gemello, con dimensioni e massa molto simili, è in realtà una vera e propria Nemesi: l’atmosfera è decine di volte più densa, composta quasi per intero da anidride carbonica e con minacciose nuvole di acido solforico. Sulla superficie la temperatura, di giorno come di notte, ai poli come all’equatore, è stabile, da chissà quanto tempo, allo stratosferico valore di +460°C. Venere è un forno inospitale per qualsiasi forma di vita e per di più la sua superficie è del tutto nascosta alla nostra vista da chilometri di nuvole che non lasciano mai neanche uno spiraglio ai nostri telescopi.

Per centinaia di anni dopo l’invenzione del telescopio, nessun essere umano è riuscito a capire cosa si nascondesse sotto le nuvole venusiane, fino a quando negli anni ‘60 le prime sonde sovietiche giunsero sull’inospitale superficie.

La mappatura completa di Venere è stata effettuata dalla sonda Magellano che negli anni ’80, grazie a un radar, ha composto la prima mappa geologica e altimetrica del pianeta. Anche se noi non lo possiamo vedere, Venere ha crateri da impatto, montagne, pianure, colline, scarpate e valli. Ma siamo sicuri che non ci sia alcun modo per sbirciare la superficie venusiana senza dover friggere a bordo di un’improbabile astronave che tenta di superare quelle fitte nuvole? La Natura in questo caso ci dà una grossa mano.

La superficie di Venere, a causa dell’enorme temperatura, emette radiazione elettromagnetica, proprio come un pezzo di ferro rovente. Con un picco verso i 4 micron ma una coda di emissione che arriva anche a 800 nm, questa radiazione termica riesce a uscire in parte dalla spessa atmosfera. Attorno alla lunghezza d’onda di 1000 nm (1 micron), infatti, l’atmosfera venusiana diventa trasparente e il calore della superficie può uscire nello spazio ed essere quindi osservato. La radiazione termica di Venere è molto più debole della luce solare riflessa dall’alta atmosfera ma se ci concentriamo sul lato non illuminato quando il pianeta mostra una fase molto sottile, allora l’impossibile diventa possibile.

Con un filtro infrarosso da un micron (1000 nm) e una camera planetaria, meglio se monocromatica, o una camera CCD per profondo cielo e un telescopio da almeno 15 cm su montatura motorizzata, è possibile fare una serie di fotografie a lunga esposizione, bruciando la falcetta di Venere e lasciando che la più debole radiazione termica del lato non illuminato venga alla luce. Non potremo mai osservarla all’oculare del telescopio perché i nostri occhi non sono sensibili agli infrarossi, ma abbiamo appena scritto la ricetta per una fotografia molto speciale.

La tecnica migliore prevede di acquisire immagini a una focale non troppo elevata, poiché si tratta a tutti gli effetti di una ripresa deep-sky e non più in alta risoluzione. Focali comprese tra i 2 e i 3 metri sono ottime per questo scopo. Dobbiamo aumentare l’esposizione e/o il guadagno, senza curarci della luminosità della parte illuminata.
La magnitudine superficiale del lato non illuminato è di circa 12 su ogni secondo d’arco quadrato, circa come quella del pianeta Nettuno e molto più alta di ogni oggetto del profondo cielo. Sebbene quindi si possa osservare la debole radiazione anche con tempi di posa brevi, di circa 0,2 secondi, per avere un ottimo segnale è meglio fare tante esposizioni con tempi compresi tra 2 e 5 secondi. Se la montatura è ben stazionata al polo non si avranno neanche problemi di inseguimento. Più frame si acquisiscono e meglio è, tanto non ci sono problemi di rotazione del pianeta. L’unica limitazione è rappresentata dal fatto che è necessario fare una ripresa del genere con il Sole tramontato e con il fondo cielo scuro.

Luce cinerea? Sì, ma di Venere e non è riflessa!

Luce cinerea? Sì, ma di Venere e non è riflessa!

Se siamo bravi e pazienti e magari disponiamo di una camera CCD per le riprese del profondo cielo, oltre al suggestivo chiarore della parte non illuminata, che renderà Venere simile alla luce cinerea lunare, potremo mettere in evidenza anche strutture superficiali. Il principio è semplice: le montagne e gli altopiani avranno temperature minori rispetto alle valli e alle grandi pianure, quindi emetteranno meno radiazione termica.

In effetti, con esposizioni lunghe, telescopi da almeno 15 centimetri, una fase della parte non illuminata inferiore al 25%, un cielo ormai scuro e acquisendo qualche centinaio di frame, è possibile mostrare la traccia inequivocabile di dettagli superficiali. Questa è una piccola rivoluzione per noi: con la nostra strumentazione possiamo fotografare la superficie di Venere, in barba a tutti quei tossici e infernali strati nuvolosi!

Non ci credete? E allora osservate questa foto che ritrae i principali dettagli superficiali, che ho composto con le immagini ottenute nel 2009 e il 18-19 febbraio scorsi. Questo è l’aspetto del nostro pianeta gemello e questo è quello che si potrà vedere da qui a pochi giorni prima della congiunzione con il Sole del 23 Marzo. Ma poi, all’alba, i giochi potranno ricominciare di nuovo e almeno fino alla metà di maggio potremo ancora cacciare questa elusiva “luce cinerea” venusiana con i nostri strumenti. Non lasciamoci sfuggire questa ghiotta occasione, altrimenti dovremo aspettare più di un anno per riprovare l’impresa!

Dettagli superficiali di Venere

Dettagli superficiali di Venere

 

jupiter_20111017_2220_gasparri

Campionamento e focale equivalente nella fotografia astronomica

Nelle osservazioni visuali le immagini vengono ingrandite attraverso gli oculari. Nella fotografia astronomica non ha più senso parlare di ingrandimento, perché al posto dell’occhio si inserisce un sensore digitale senza obiettivo e l’immagine, a rigor di logica, non viene ingrandita. In questi casi si parla di scala dell’immagine o campionamento, le grandezze che determinano “l’ingrandimento” delle immagini digitali.

Il campionamento, o scala dell’immagine, rappresenta la dimensione angolare di cielo che riesce a riprendere un singolo pixel del sensore. Quindi, questo determina anche il più piccolo dettaglio che è possibile, in teoria, risolvere. Una scala dell’immagine di 2”/pix (secondi d’arco su pixel) indica che ogni pixel inquadra una porzione di cielo con lato di 2”. Poiché i pixel sono i punti che formeranno l’immagine digitale, tutto quello che ha dimensioni inferiori a 2” non sarà mai risolto dal sensore. Questo prescinde dalla turbolenza atmosferica e da diametro dello strumento e rappresenta una specie di potenziale. È infatti certo che un’ipotetica scala dell’immagine di 40”/pixel non risolverà mai delle strutture di galassie o nebulose inferiori a questo valore. D’altra parte non è detto, anzi, non è proprio possibile dai nostri cieli, che un campionamento di 0,5”/pixel riesca a mostrarci dettagli di questa dimensione angolare perché saranno rovinati dalla turbolenza atmosferica, anche se usassimo un telescopio in grado di mostrarceli. Il campionamento, quindi, non determina direttamente la risoluzione dell’immagine ma ci permette di capire parametri fondamentali come il campo di ripresa che si ha con una certa accoppiata telescopio – sensore, quindi dà indicazioni su quali soggetti possiamo riprendere al meglio e se saremo limitati o meno dalla turbolenza atmosferica.

Calcolare il campionamento di un’immagine è facile utilizzando la seguente formula:

C = (Dp /F) x 206265,

dove C = campionamento (in secondi d’arco su pixel) , Dp = dimensioni dei pixel del sensore utilizzato e F = focale del telescopio. Dp e F devono avere le stesse unità di misura; 206265 è il fattore di conversione tra radianti e secondi d’arco. Di solito le dimensioni dei pixel sono espresse in micron, mentre quelle della focale in millimetri. Niente paura: un micron corrisponde a 0,001 millimetri.

 

Campionamento ideale nelle fotografie a lunga esposizione

Un principio, detto criterio di Nyquist, applicato al campo ottico afferma che per sfruttare una determinata risoluzione occorre che il più piccolo dettaglio visibile cada almeno su due pixel adiacenti. Se consideriamo che nel mondo reale è meglio se il più piccolo dettaglio risolvibile cada su almeno 3 pixel, possiamo giungere a importanti conclusioni su quale possa essere il massimo campionamento efficace nella fotografia a lunga esposizione. Se la risoluzione massima a cui possiamo ambire è determinata dalla turbolenza media ed è intorno ai 2,5-3”, a prescindere dal diametro del telescopio, significa che le scale dell’immagine più basse che possiamo usare prima di avere l’effetto delle stelle a pallone e dettagli sempre sfocati sono dell’ordine di 0,8”-1”/pixel. Nelle condizioni medie, di fatto non conviene quasi mai lavorare con scale più piccole di 1”-1,5”/pixel.

L’effetto più grave di quello che si chiama sottocampionamento, cioè lavorare con scale più grandi, è mostrare stelle così piccole che potrebbero diventare quadrate, perché questa è la forma dei pixel, ma d’altra parte avremo sempre dettagli degli oggetti estesi ben definiti e contrastati, con una profondità in termini di magnitudine ancora ottima. L’effetto di un sovracampionamento, cioè di una scala dell’immagine più bassa di quella limite, è quello di restituire stelle sempre molto grandi e dettagli degli oggetti estesi sfocati e indistinti. Come se non bastasse, un sovracampionamento produce anche una perdita, a volte notevole, di profondità perché la luce si espande su più pixel invece di venir concentrata in una piccola area. Il mio consiglio, quindi, è di non esagerare con la scala dell’immagine e di preferire immagini “meno ingrandite” ma più definite a improbabili zoom che mostrerebbero nient’altro che un campo confuso e molto rumoroso. Questo ragionamento vale sia per le riprese telescopiche, in cui si dà per scontato che il seeing sia il limite alla risoluzione rispetto al diametro dello strumento, che per le fotografie attraverso obiettivi e teleobiettivi, in cui il limite deriva dal potere risolutivo dell’ottica.

Conoscendo il campionamento e il numero di pixel dei lati del sensore, possiamo subito comprendere quanto sarà grande il nostro campo di ripresa e capiremo se sarà possibile riprendere al meglio un’estesa nebulosa o una debole galassia.

Districandosi in questa specie di giungla, potremo costruire un setup più specifico per la tipologia di oggetti che più ci piace. A livello generale e personale, finché useremo delle semplici reflex digitali non vale la pena farsi troppi conti perché tanto per queste non c’è molta scelta a livello di dimensioni dei pixel e del formato del sensore. Quando invece parliamo di CCD (o CMOS) astronomici, che dobbiamo scegliere con molta attenzione, il campionamento che otterremo con il nostro setup rappresenta il punto più importante per la scelta. Sarà infatti inutile, e frustrante, usare un sensore con pixel di 5 micron su un telescopio Schmidt-Cassegrain da 1,5-2 metri di focale, che ci darà un campionamento di 0,70-0,50”/pix e potrebbe venir sfruttato in pieno solo dal deserto di Atacama. Nelle nostre località otterremo sempre stelle a “pallone” e oggetti diffusi molto deboli e rumorosi, tanto da richiedere ore e ore di integrazione per mostrare dettagli interessanti. Un risultato simile si sarebbe ottenuto con una scala dell’immagine anche tre volte superiore e un tempo di integrazione totale dalle 4 alle 9 volte inferiore.

Avere pixel molto piccoli comporta anche una perdita di sensibilità e dinamica, perché un pixel più piccolo raccoglie meno luce e può contenere molti meno elettroni di uno più grande, con la conseguenza che il range dinamico del sensore si può ridurre anche di 5 volte tra pixel da 5,6 micron e da 9 micron. Poiché un sensore astronomico è qualcosa che dovrebbe durare per molti anni e le serate buone si possono contare in un anno sulle dita di due mani, è meglio sceglierne uno che si accoppi in modo perfetto al nostro telescopio. Se ci piacciono primi piani di galassie è meglio ingrandire le immagini in elaborazione che lavorare a una scala piccolissima.

 

Campionamento ideale nell’imaging in alta risoluzione

Quando parliamo di fotografia in alta risoluzione le cose cambiano drasticamente perché, grazie a pose molto brevi e un enorme numero di frame catturati, possiamo sperare di abbattere il muro eretto dalla turbolenza atmosferica media e spingerci verso la risoluzione teorica dello strumento, fino a un limite di circa 0,3” nelle zone più favorevoli e nelle migliori serate. Quando il seeing collabora, quindi, possiamo impostare la scala dell’immagine sui limiti di risoluzione teorica dello strumento che stiamo utilizzando. Una buona relazione per determinare la risoluzione alle lunghezze d’onda visibili è quella di Dawes:

PR = 120/D

Dove PR = potere risolutivo, in secondi d’arco, e D = diametro del telescopio espresso in millimetri.

Come già detto, affinché il sensore sia in grado di vedere questa risoluzione occorre che questa cada su 3-4 pixel: né molto più, né molto meno. In queste circostanze, allora, il nostro obiettivo sarà quello di lavorare a cavallo del campionamento ottimale, che può essere espresso dalla semplice formula:

Cott= 37/D

Dove D = diametro del telescopio espresso in millimetri e Cott = campionamento ottimale, espresso in secondi d’arco su pixel. Come possiamo vedere dal confronto con la formula di Dawes, cambia di fatto solo il coefficiente numerico, che è inferiore di poco più di tre volte, proprio come abbiamo detto con le parole. Il valore ottenuto, come quello della formula di Dawes, rappresenta un punto di riferimento alle lunghezze d’onda visibili e non un numero da rispettare in modo rigoroso. Scostamenti del 10-20% sono ancora accettabili e, anzi, incoraggiati, poiché ogni sensore, telescopio e soggetto possono preferire valori leggermente diversi dalla semplice teoria con cui abbiamo ottenuto questi.

I valori che raggiungiamo sono tutti piuttosto piccoli ed ecco spiegato il motivo per cui nell’imaging planetario è preferibile usare sensori con pixel di dimensioni ridotte, tra i 3 e i 7 micron al massimo: l’opposto di quanto si preferisce fare nella fotografia a lunga esposizione.

Nonostante questo, i rapporti focale tipici si aggirano tra f20-22 (per pixel da 3,7 micron) e f 30-35 (per pixel da 5,6 micron) e si rende necessario inserire oculari o lenti di Barlow per aumentare la focale nativa del telescopio. Invece di fare complicati calcoli sul rapporto focale raggiunto con un certo oculare o Barlow, per capire a quale campionamento reale si sta operando il modo migliore è fare dei test riprendendo un pianeta, ad esempio Giove. Misurando l’estensione in pixel e confrontandola con il diametro apparente che si può leggere da ogni software di simulazione del cielo, possiamo trovare il campionamento reale della ripresa applicando questa formula:

Ccalc = dang/dlin

Dove dang  sono le dimensioni angolari (in secondi d’arco) e dlin  il diametro misurato dell’immagine, espresso in pixel. Il campionamento restituito sarà in secondi d’arco su pixel. A questo punto la focale con cui è stata fatta la ripresa sarà:

Feq = (Dp/ C) x 206265

Dove Dp  sono le dimensioni dei pixel del sensore, espresse in millimetri e C il campionamento (calcolato sull’immagine o stimato, non cambia). La focale restituita sarà in millimetri. Il rapporto focale sarà dato dalla semplice relazione Feq / D, con D = diametro del telescopio, in millimetri. Queste formule sono valide in generale, quindi anche per le riprese del profondo cielo.

Anche in questa circostanza, avere a disposizione miliardi di pixel è dannoso, e molto più rispetto alla fotografia del profondo cielo (in cui il danno principale è l’esigenza di avere telescopi dall’enorme capo corretto, quindi molto costosi). Poiché il campionamento ideale è fissato e i pianeti hanno dimensioni angolari ridotte, per ottenere ottime immagini non potremo avere, ad esempio, Giove esteso per 4 milioni di pixel. Il sovracampionamento nell’imaging in alta risoluzione è distruttivo e sarebbe sempre da evitare, molto più che nella fotografia a lunga esposizione nella quale, almeno, possiamo sperare di allungare il tempo di integrazione per sopperire in parte al danno che abbiamo fatto.

Nella fotografia in alta risoluzione “ingrandire” troppo l’immagine ci allontanerà sempre da un risultato ottimo. Anche se all’inizio potrebbe sembrare che ottenere delle “pizze” ingrandite a dismisura possa essere entusiasmante, in barba ai teorici del campionamento ideale, stiamo osservando un risultato che è sempre peggiore rispetto a quanto avremmo ottenuto con “l’ingrandimento” giusto. Non è un’opinione, è un fatto e anche se non piace non si può cambiare.

Se i pianeti saranno estesi al massimo qualche centinaio di pixel (se abbiamo strumenti oltre i 20 cm), che ce ne facciamo di un sensore che ne possiede diversi milioni? Niente, a meno che non ci vogliamo dedicare espressamente a panorami lunari, ma anche in queste circostanze ci sono comunque dei limiti. Usare sensori con più di 2-3 milioni di pixel per fare imaging in alta risoluzione non è una buona soluzione perché si riduce di molto il framerate, cioè la frequenza con cui si acquisiscono le immagini, che in alta risoluzione è fondamentale avere almeno a 15-20 frame al secondo (fps).

tabella_calibrazione

La calibrazione delle immagini digitali

Per fare ottime fotografie a lunga esposizione degli oggetti del cielo profondo servono pochi ingredienti ma ben amalgamati: 1) Un cielo ottimo lontano dalle luci della città, 2) Una montatura equatoriale precisa che possa fare anche autoguida, 3) Una camera digitale, 4) Una buona tecnica di ripresa. In questa ricetta non trova posto l’elaborazione e non è un caso, perché una buona tecnica di elaborazione si impara con il tempo e può solo far uscire al meglio tutto il segnale raccolto durante la fase di acquisizione. Se non abbiamo fatto tutto per bene potremmo essere anche i maghi di Photoshop ma dai nostri scatti non uscirà niente di buono.

Una delle fasi più importanti della fotografia astronomica a lunga esposizione (quindi no imaging planetario) è la cosiddetta calibrazione, una tecnica che prevede di acquisire due – tre set di particolari immagini che hanno il compito di correggere gli inevitabili difetti del sensore e del campo. Sono passaggi che si potrebbero fare anche in fase di elaborazione, si potrebbe pensare, ma non daranno mai e poi mai gli stessi risultati di frame di calibrazione genuini ottenuti sul campo. Volenti o nolenti dobbiamo imparare come ottenere questi scatti perché fanno parte integrante della tecnica di ripresa. Ecco allora quali sono i frame di calibrazione e le loro caratteristiche. In seguito vedremo come applicarli.

 

Dark frame: sono immagini ottenute con il CCD al buio, con la stessa sensibilità, temperatura e durata delle immagini del cielo (che chiameremo anche immagini di luce) e servono per eliminare parte del rumore, cosiddetto termico, che si ripete uguale da una foto all’altra, spesso come pixel più luminosi della media. Il rumore termico si riduce con l’abbassarsi della temperatura del sensore, ma non sparirà mai a meno di usare l’azoto liquido e arrivare ad almeno -100°C. I dark frame, quindi, vanno ripresi (quasi) sempre, anche se sembra che non ve ne sia bisogno. Ce ne potremo pentire quando vedremo comparire, sulle immagini di luce sommate, il temutissimo rumore a pioggia anche con CCD molto evolute. Se il sensore ha il controllo della temperatura possiamo riprendere i dark frame anche con calma a casa e creare una vera e propria libreria da rinnovare una volta l’anno, risparmiando quindi molto tempo. Con le reflex digitali, che non hanno il controllo di temperatura del sensore, fare i dark frame è difficile e creare una libreria impossibile, per questo motivo si potrebbero preferire altri frame di calibrazione.

Un master dark frame ottenuto con una camera CCD ST-2000XCM, temperatura di -10°C e 720 secondi di esposizione.

Un master dark frame ottenuto con una camera CCD ST-2000XCM, temperatura di -10°C e 720 secondi di esposizione.

 

Bias frame: sono immagini ottenute con la stessa sensibilità dei frame da calibrare e con tempo di esposizione pari a zero o comunque il più basso possibile, con il sensore al buio. Questi frame hanno lo scopo di catturare solo il rumore introdotto dall’elettronica del sensore. Possono sostituire i dark frame in quelle circostanze in cui a dominare non è il rumore termico ma quello elettronico (pose brevi, sensore raffreddato a oltre -30°C, riprese fatte con reflex senza controllo di temperatura).

Un master bias ottenuto mediando 50 frame. Da notare il confronto con il master dark precedente. ebbene nascoste dai pixel caldi, anche in quello sono presenti le colonne di pixel caldi tipici del rumore dell'elettronica. Questa è la prova che un dark frame contiene anche l'informazione catturata dai bias e che i due set di calibrazione sono complementari.

Un master bias ottenuto mediando 50 frame. Da notare il confronto con il master dark precedente. ebbene nascoste dai pixel caldi, anche in quello sono presenti le colonne di pixel caldi tipici del rumore dell’elettronica. Questa è la prova che un dark frame contiene anche l’informazione catturata dai bias e che i due set di calibrazione sono complementari.

 

Flat field: sono essenziali per ogni fotografia, a volte persino quando si fanno riprese in alta risoluzione di oggetti estesi come il Sole, o riprese a grande campo con obiettivi grandangolari. Pochi astrofotografi sono consapevoli della trasformazione che subisce la propria foto quando viene corretta con degli ottimi flat field. Di questi, comunque, ne abbiamo già parlato, quindi non mi dilungherò. Sono delle speciali immagini ottenute con la stessa configurazione di quelle che vogliamo calibrare, in cui si punta una sorgente di luminosità fissa e uniforme su tutto il campo. I flat field mappano la sensibilità del campo inquadrato, includendo la differente risposta dei pixel, vignettatura e polvere lungo il treno ottico. Non possono quindi essere ripresi con calma a casa perché necessitano dell’identica configurazione ottica delle immagini di luce, compresa messa a fuoco ed eventuali filtri. Un buon flat field si ottiene con la sensibilità al minimo e impostando un tempo di esposizione tale per cui il picco di luminosità nell’immagine cada a circa 1/3 della scala per le reflex, a ½ per le CCD senza antiblooming (25-30 mila ADU) e circa 1/7 (8000 ADU) per le camere CCD (e CMOS) dedicate all’imaging estetico, quindi con porta antiblooming. L’unico legame con le immagini di luce è la stessa configurazione ottica: esposizione, sensibilità e temperatura possono variare, anche se per le camere CCD dotate di otturatore meccanico è meglio esporre per almeno 4-5 secondi ed evitare di riprendere quindi parte dell’otturatore che si apre.

Master flat field ottenuto facendo la media di 37 scatti da 5 secondi calibrati con master bias. I flat field devono essere sempre calibrati con i relativi dark o con i bias.

Master flat field ottenuto facendo la media di 37 scatti da 5 secondi calibrati con master bias. I flat field devono essere sempre calibrati con i relativi dark o con i bias.

 

Come nel caso delle immagini di luce, non si acquisisce una sola esposizione per ogni set di calibrazione, piuttosto almeno 10, meglio 20 immagini per ogni categoria. Il numero dipende da noi e non ha alcun legame con la quantità di immagini da correggere. Questo è molto importante per non introdurre nuovo rumore nei frame che vogliamo calibrare. La media (o mediana, nel caso di dark e bias) dei frame di calibrazione va a comporre quello che si chiama master. Ogni singolo scatto di luce deve venir calibrato, prima che sia combinato, con i relativi master (dark e/o bias, flat). Anche i flat field, che sono speciali immagini di luce, devono venir calibrati, prima di essere mediati e creare il relativo master, con un master dark frame o master bias frame. Di solito a questo intricato intreccio ci pensa il software usato ma meglio essere consapevoli di quello che andrà a fare.

Come si usano i frame di calibrazione? Quali servono per le nostre esigenze? Ci sono diverse combinazioni possibili. Ecco quelle consigliate, anche se ognuno di noi può fare le prove che vuole.

 

  • Camera CCD raffreddata con controllo della temperatura, con pose di luce più lunghe di 5 minuti e flat field esposti per non più di 20 secondi.

In questa situazione la combinazione migliore è quella di acquisire tutti i frame di calibrazione. I dark frame correggeranno le immagini di luce e i bias frame correggeranno i flat field. Poi i flat field calibrati verranno mediati e il master flat verrà applicato alle immagini di luce a cui sarà stato sottratto il master dark. I dark frame contengono anche l’informazione dei bias frame, cioè il rumore dell’elettronica, quindi quando li sottraiamo stiamo togliendo anche il bias. Il bias frame può sostituire i dark frame su pose di breve durata come quelle tipiche dei flat field. In questo modo evitiamo di dover riprendere dei dark frame anche per correggere i flat e possiamo usare i bias che sono sempre uguali poiché non dipendono dalla durata dell’esposizione, né dalla temperatura;

  • Camera CCD raffreddata con controllo temperatura, pose di luce più lunghe di 5 minuti e flat field più lunghi di 3 minuti.

Un’eventualità del genere si verifica quando si fanno riprese in banda stretta. In questi casi è meglio lasciar perdere i bias e riprendere dark frame sia per le pose del cielo che per i flat field. I due set sono indipendenti perché legati alla temperatura e al tempo di posa delle rispettive immagini da correggere. Si correggeranno quindi i flat field con i relativi dark frame e le immagini di luce con gli altri, poi si applicherà il master flat field a ogni singola immagine di luce;

  • Camera CCD raffreddata con esposizioni più brevi di 3-5 minuti. In questi casi i dark frame possono essere superflui, se la camera lavora a temperature molto basse. Flat field e immagini di luce possono quindi venir calibrati solo con i bias frame.
  • Reflex digitale.
    In queste circostanze i dark frame potrebbero non essere la scelta migliore perché se la temperatura del sensore cambia, anche di un paio di gradi, i benefici saranno sostituiti dai danni. L’unico rimedio è riprendere sempre flat field e bias frame, in buone quantità, e affidarsi anche alla tecnica del dithering in fase di acquisizione delle immagini di luce, per evitare il rumore a pioggia tipico di queste situazioni.

Sembra tutto molto complicato ma in realtà non lo è, grazie anche ai software che ci evitano di dover creare noi stessi i file master. L’importante, comunque, è prendere mano con la tecnica di acquisizione perché una mancanza sul campo ci potrebbe far buttare l’intera sessione. Per capire come fare poi la calibrazione attraverso i programmi astronomici avremo tante, troppe, notti nuvolose per studiare, tanto i file acquisiti non scapperanno dal pc.

 

 

testa_cavallo_30ottobre_newton25_26x720_web_2

Una libreria di miei fit grezzi per fare pratica

L’astronomia è condivisione, sia se la facciamo per hobby che per professione. La condivisione diventa necessaria quando parliamo di dati, di fotografie e di tutto ciò che può essere utile alla scienza o nell’apprendere nozioni in un campo nuovo. Se nessuno condividesse le proprie esperienze sarebbero molto pochi gli appassionati del cielo e ancora meno i progressi fatti dalla scienza negli ultimi secoli.

Spesso mi hanno chiesto quale fosse il segreto delle mie immagini, quale magica pozione utilizzassi per elaborarle. Molti sono infatti convinti che la magia di una foto la si crei nella fase di elaborazione, dove con qualche software potente come Photoshop potremo estrarre dettagli sorprendenti di una nebulosa, magari partendo da una sfocata fotografia a un segnale stradale. Certo, tutto è possibile, anche questo, ma credo che sarebbe bello partire da un’immagine reale e fare tutte quelle operazioni che non alterano il segnale catturato. L’obiettivo di un’elaborazione, sia pur estetica, di una fotografia astronomia dovrebbe essere quello di mostrare al meglio tutto il segnale catturato, senza cambiarlo, senza interpretare la realtà che resta quella che il nostro sensore digitale ha catturato. La tentazione di passare dalla fase di elaborazione a quella di fotoritocco può essere grande, soprattutto quando la nostra voglia di ottenere buoni risultati si trasforma in frustrazione vedendo in giro capolavori in apparenza irraggiungibili.

La fase fondamentale della realizzazione di un’ottima immagine astronomica si affronta sempre durante lo scatto, sul campo, spesso al freddo e all’umido. E’ una fase che spesso inizia prima dello scendere del buio, quando dobbiamo trovare il luogo adatto, privo di luci e di umidità, allineare il cercatore, collimare lo strumento (se serve), stazionare in modo perfetto la montatura verso il polo, scegliere il soggetto migliore per la serata e la strumentazione, che deve avere certe caratteristiche, impostare la guida, curare l’inquadratura, la messa a fuoco e poi sperare che per almeno 3-4 ore vada tutto bene, perché quando tutto funziona ed è stato ottimizzato l’unico segreto è questo: esporre, esporre ed esporre per 3-4-5 e più ore. Solo in rarissimi casi si possono ottenere splendide fotografie con un tempo di integrazione totale inferiore a un’ora e sempre la potenziale bellezza di uno scatto aumenta all’incrementare del tempo che gli dedichiamo, non di fronte al computer a elaborarlo ma sotto il cielo, a raccogliere fotoni che hanno viaggiato per migliaia o milioni di anni luce.

Proprio per dare un punto di riferimento a chi cerca di addentrarsi nel mondo della fotografia a lunga esposizione del profondo cielo o per tutti coloro che vogliono capire come migliorare i propri risultati, ho messo a disposizione una serie di fit scattati al cielo coon differenti strumenti e sensori. Per questioni di spazio non ho potuto mettere a disposizione i file singoli con i frame di calibrazione ma solo i file grezzi calibrati e sommati. Potete utilizzarli per fare pratica, divertirvi con gli amici, provare a scovare (e ce ne sono molti) i difetti. Potete pubblicarli per uso non commerciale citando sempre l’autore. Non dovete mai, in nessun caso, eliminare i riferimenti per l’autore o, peggio, spacciarli per vostri perché se vi becco sono cavoli amari 🙂 .

Alcune immagini non le ho elaborate neanche io ancora, per mancanza di tempo, quindi non ho la minima idea di come potranno venire. Molte altre, invece, le trovate elaborate nella mia gallaery su astrobin: http://www.astrobin.com/users/Daniele.Gasparri/collections/253/

Ecco l’elenco completo da cui poter scaricare le immagini. I file sono compressi in formato zip. All’interno troverete il file fit. Ho scelto questo formato, che Photoshop non legge a meno di scaricare il programma gratuito Fits Liberator, perché è lo standard internazionale per tutti i dati astronomici. Tutti i software appositi lo leggono, compreso Deep Sky Stacker, Nebulosity, Iris, Registax, MaxIm DL, PixInsight, AstroArt…

Mettete questo post tra i preferiti perché con il tempo verrà aggiornato con nuovi scatti, compresi quelli in alta risoluzione:

Qualcuno riconosce il campo inquadrato? La scala è la stessa della fotografia delle Pleiadi, solo che in questo caso ci sono molti più colori: è un vero spettacolo!

Come fotografare in modo spettacolare i colori delle stelle

Fare foto al telescopio, inseguendo nebulose, galassie e ammassi stellari è il sogno proibito di molti appassionati di astronomia, che spesso si infrange di fronte alle difficoltà tecniche, strumentali ed economiche richieste. Non si deve avere fretta, è un percorso che va fatto con pazienza e determinazione: questo è quanto viene detto sempre. Sì, d’accordo, ma da qualche parte dovremo pur cominciare, no? Magari abbiamo a disposizione una reflex digitale e un piccolo telescopio e ci piacerebbe iniziare a fare qualche semplice scatto, giusto per provare.

Di solito si comincia a fare foto alla Luna, poi a qualche pianeta brillante. Per andare oltre e fare le lunghe esposizioni richieste per immortalare gli oggetti del cielo profondo serve un salto di qualità non indifferente: una montatura equatoriale molto robusta, uno strumento buono dal punto di vista ottico e meccanico, un sistema di controllo dell’inseguimento, detto autoguida. Il fiume da guadare è piuttosto largo e profondo, soprattutto se non disponiamo di una montatura equatoriale all’altezza.

Prima di decidere se accontentarsi di quello che si ha, o svuotare il portafogli e ipotecare il futuro con il proprio partner, che potrebbe non apprezzare la vostra decisione, possiamo dedicarci a un tipo di fotografia astronomica attraverso il telescopio che non richiede costosi strumenti, né complesse montature. Anzi, a dire la verità non richiede neanche di inseguire le stelle!

La tecnica che sto per descrivere è stata portata alla ribalta negli anni ’80 e ’90 da un astronomo dell’Anglo Australian Observatory, che i più esperti forse già avranno sentito nominare: David Malin. Munito di una semplice attrezzatura e un po’ di inventiva si era chiesto, grazie al suo background scientifico: è possibile riprendere il colore delle stelle in modo più efficace rispetto a quanto accade in una normale fotografia? Non è infatti difficile notare come molte delle foto del profondo cielo mostrino stelle tendenzialmente bianche. Solo con una grossa dose di manipolazione software i più bravi astrofotografi riescono a tirare fuori qualche tonalità, ma non è una strada molto agevole, né spettacolare.

Partiamo allora dal principio alla base di questa nostra nuova esperienza di fotografia astronomica: le stelle si mostrano di diversi colori. A parte gli astri di classe A, come Vega, che appaiono completamente bianchi, tutti gli altri puntini sono colorati, anche se i nostri occhi faticano a notare la tonalità a causa della scarsa saturazione e della minore efficienza del nostro sistema visivo in condizioni di bassa illuminazione. Le fotocamere, però, non hanno questi problemi e per di più potremo aumentare la saturazione quanto vogliamo in fase di elaborazione per esasperare le differenze di colore delle stelle. Non si tratta di un mero esercizio di astrofotografia e di elaborazione: i colori delle stelle, reali, dipendono dalla loro temperatura superficiale. Possiamo quindi fare anche della scienza dall’esperienza che stiamo per fare, cosa che non guasta mai.

Quando fotografiamo una stella ben messa a fuoco dal telescopio la sua luce si concentra in pochissimi pixel che spesso diventano rapidamente saturi, se non in fase di acquisizione quando andiamo a regolare curve e livelli con qualche software. Da questa considerazione è nata l’idea geniale di Malin: per mostrare il colore delle stelle dobbiamo far espandere la loro luce su un’area maggiore, in modo che non si rischi di saturare i pixel. Il metodo migliore per fare questo prevede di sfocare leggermente l’immagine: semplice quanto efficace. Per dare un tocco estetico alla nostra futura foto, la tecnica di Malin considera un dettaglio geniale: la sfocatura progressiva, senza il moto di inseguimento delle stelle.

Ecco quindi quello che dobbiamo fare:

  • Colleghiamo la nostra reflex al telescopio. Se non sappiamo come fare, siamo nel posto migliore: contattate i tecnici di Teleskop Service Italia che vi consiglieranno gli accessori necessari (sono tutti economici). Il telescopio più adatto, al contrario di quelli usati per fare ottime foto al cielo, è un rifrattore, anche di piccolo diametro e non necessariamente apocromatico. In linea di principio, comunque, tutti gli strumenti vanno bene, compresi obiettivi e teleobiettivi fotografici;
  • Scegliamo un campo ricco di stelle brillanti. In queste serate autunnali le Pleiadi o il doppio ammasso del Perseo sono perfetti, se lavoriamo almeno a 400 mm di focale. Se abbiamo un campo molto largo perché usiamo un teleobiettivo, meglio andare verso la cintura di Orione;
  • Mettiamo a fuoco come se dovessimo scattare una perfetta foto astronomica, aiutandoci con la modalità live view;
  • Impostiamo sensibilità almeno a 400 ISO, modalità di scatto in formato RAW e posa Bulb. Meglio avere un telecomando per controllare l’esposizione della reflex senza doverla toccare. In mancanza di telecomando ci dobbiamo accontentare della posa massima consentita: 30 secondi, e dell’autoscatto;
  • Appena iniziamo lo scatto disattiviamo il moto di inseguimento siderale. Possiamo in ogni caso selezionare la modalità autoscatto, anche con il telecomando della reflex, e avere qualche secondo di tempo per disattivare il moto orario prima che inizi lo scatto. Si può anche provare a fare una variante interessante: 10 secondi di foto con messa a fuoco perfetta e moto orario acceso e poi il resto (sempre in uno scatto singolo) senza inseguimento e con la sfocatura progressiva che stiamo per vedere;
  • Toccando molto leggermente il focheggiatore, mentre la posa va avanti e le stelle si sposteranno, variamo in modo continuo e molto delicato la messa a fuoco, fino al termine dello scatto, compreso tra i 60 e i 120 secondi. Il fuoco non dovrebbe variare moltissimo, ma di quanto ruotare la manopola del focheggiatore lo capiremo dopo il primo tentativo. Ora osserviamo il risultato ed emozioniamoci, perché abbiamo fatto una foto sia artistica che scientifica, molto più didattica di tanti scatti fatti da astrofotografi esperti e purtroppo così pieni di elaborazione da aver perso quasi del tutto il contatto con la realtà.
Gli spettacolari colori delle Pleiadi, catturati con la tecnica descritta nel post attraverso un rifrattore da 106 mm e Canon 450D. Posa singola di circa 90 secondi.

Gli spettacolari colori delle Pleiadi, catturati con la tecnica descritta nel post attraverso un rifrattore da 106 mm e Canon 450D. Posa singola di circa 90 secondi.

 

Cosa accade in pratica quando applichiamo questa tecnica? La non compensazione del moto terrestre produce sul sensore le classiche tracce stellari. La sfocatura progressiva durante l’esposizione trasforma le tracce in tanti piccoli coni, la cui larghezza e lunghezza dipendono dal tempo di esposizione e dall’intensità della sfocatura. In questo modo la nostra immagine contiene molta più dinamica rispetto a una classica posa: le stelle più brillanti mostreranno il colore nella parte terminale del cono, quando la loro luce si sarà distribuita su un numero sufficientemente grande di pixel per evitare la saturazione. Le stelle più deboli avranno coni più brevi ma sempre colorati, soprattutto nella parte iniziale vicina al punto di fuoco.

La fase di elaborazione, spesso temuta e odiata, è semplicissima, anche se abbastanza importante. La saturazione dei colori delle stelle è per natura piuttosto contenuta. A questo però è facile porre rimedio con qualsiasi programma di elaborazione delle immagini. E’ infatti sufficiente aumentare la saturazione del colore di almeno il 50% per far emergere finalmente un campo pieno di evidenti sfumature e affascinanti contrasti. Non è necessario fare altro.

I colori delle stelle e l’estetica dell’immagine risultante dipendono dalla lunghezza e dalla larghezza dei coni stellari, quindi dalla focale di ripresa, dal tempo di esposizione, dall’intensità della sfocatura. Le variabili in gioco sembrano complicare la nostra ripresa, ma questa è una delle rare e piacevoli situazioni nelle quali la pratica è molto più semplice di qualsiasi spiegazione.

Qualcuno riconosce il campo inquadrato? La scala è la stessa della fotografia delle Pleiadi, solo che in questo caso ci sono molti più colori: è un vero spettacolo!

Qualcuno riconosce il campo inquadrato? La scala è la stessa della fotografia delle Pleiadi, solo che in questo caso ci sono molti più colori: è un vero spettacolo!

Il consiglio principale, quindi, è quello di fare esperienza e dare sfogo alla vostra fantasia. Sono sufficienti pochi minuti ed un paio di tentativi per trovare già il giusto compromesso che soddisfa il vostro gusto estetico. E, chissà, proprio come accade in altri ambiti della società, i nostri scatti creativi potrebbero riportare di moda questa tecnica, che molti nativi digitali, purtroppo, neanche conoscono. Eppure è utile, divertente e piuttosto artistica. A questo punto, allora, osservando i nostri capolavori un paio di domande sono obbligatorie: a quali temperature corrispondono i colori che stiamo osservando? Sono più calde le stelle rosse o blu? E di quanto? Scopriamolo da soli con enorme soddisfazione: è il bello dell’astronomia amatoriale!

Montare un filtro da 2″ davanti ad un obiettivo fotografico

Geoptik produce da tempo un interessante raccordo, che permette di montare filtri da 2″ su obiettivi con filetto da 58mm ( http://www.teleskop-express.it/adattatori-verso-2/1285-adattatore-filtri-2-geoptik.html ). Tenuto conto che la fotografia astronomica a grande campo è da diversi anni che sta attraendo nuovi astrofotografi, specie grazie all’interessamento anche dei fotografi paesaggisti in prevalenza, in tanti si pongono il problema nel caso dovessero montare un filtro per riprendere, ad esempio un halpha oppure un filtro LPR.

Nel caso si possieda una Canon in formato APS-C la soluzione è semplice, ci sono i filtri EOS-Clip della Astronomik, ma per chi possiede reflex di altre marche? Qualcosa sembra muoversi sul fronte Sony, grazie all’interessamento di Hutec, ma al momento chi ha una reflex al di fuori di Canon, purtroppo, non ha moltissime scelte. Una soluzione è quella di montare un filtro da 2″ davanti al nostro obiettivo, ma se non ha il filetto M58, ma più grande, come posso fare se volessi usare l’adattatore Geoptik?

Per fortuna Amazon ci viene incontro! Infatti basta prendere degli anelli Step Down, che costano davvero poco, un esempio: https://www.amazon.it/49mm-Anelli-Lenti-Adattatore-Filtri/dp/B008H2HUC4/ref=sr_1_3?ie=UTF8&qid=1478534130&sr=8-3&keywords=step+down+ring

In questo modo, spendendo meno di 10€, possiamo montare il nostro bel filtro e fare quello che vogliamo. Però la vignettatura introdotta, quanto mi inciderà e a che focali?

Bene, qui si sviluppa il nostro piccolo test. Ho montato la serie di anelli Step Down, fino al filetto M58 per poi montare l’adattatore Geoptik, su 2 obiettivi Canon in mio possesso e usati con una reflex Full Frame.

Attenzione!!!! I risultati sono stati ottenuti con una reflex full frame, quindi con un formato APS-C le tolleranze sono maggiori.

Qui sono stati montati gli anelli Step Down e l’adattatore Geoptim 30A193 su di un Canon 17-40L

img_9141

Ovviamente più la focale è bassa, più avremo l’effetto vignettatura, che a focali ultragrandandolari assume una rilevanza da..buco della serratura!

Qui a 17mm, immagine inutilizzabile

17-40_17mm

Qui invece a 40mm, l’immagine diventa usabile, tenuto conto della fisiologica vignettatura di ogni obiettivo

17-40_40mm

Con focali da 100 e 400mm ovviamente nessun problema:

100-400_100mm 100-400_200mm

Gli obiettivi usati hanno un diametro per i filtri da 77mm, bello grande, quindi più anelli dobbiamo mettere, più il nostro filtro si sposterà lontano dalla lente e…vignetteremo. Sicuramente la configurazione che ho usato è una delle peggiori possibili come tolleranze, diametro grande e sensore full frame.

In linea di massima si può dire che con reflex full frame ed obiettivi con diametro sui 77mm, la focale minima usabile parte da 30mm circa. Con sensore APS-C e obiettivi con diametro minore, ovviamente avremo MOLTA più tolleranza per operare a focali ultragrandangolari.

A mio avviso vale la pena provare, per neanche 10€ + adattatore Geoptik 30A193, provare a montare un filtro da 2″ sulla nostra reflex e tentare qualche bella ripresa. Ad esempio io proverò a riprendere in halpha, con una Sony A7s modificata e a focali dai 50mm in su, il complesso di nebulose in Orione con il suo anello di Barnard, vediamo cosa salterà fuori e se la vignettatura causerà problemi o meno, buone riprese a grande campo a tutti!

I flat field eliminano tutti i gradienti di luce dovuti alla strumentazione usata. Non eliminano i gradienti presenti nel cielo ma cancellano polvere e vignettatura, e questa è un grandissimo aiuto per tutti i soggetti molto deboli.

Cosa sono e come ottenere ottimi flat field

Chi si interessa di astronomia pratica e magari ha amici astrofotografi, avrà di certo sentito nominare i frame di calibrazione, in particolare i flat field. Chi ha iniziato a fotografare da poco avrà già individuato in queste due strane parole un nemico troppo grosso da sconfiggere, tanto che potrebbe pure aver deciso di voltarsi dall’altra parte e di far finta che non esita. Chi fotografa da più tempo, o chi si impegna nel campo della ricerca con mezzi amatoriali, ha capito come padroneggiarli, ma fatica ancora a reputarli tanto importanti da meritare di essere diffusi come se fossero il verbo supremo della fotografia a lunga posa degli oggetti celesti. In questo post capiremo cosa sono i flat field, perché sono importanti e come farli diventare le nostre migliori risorse per trasformare un’immagine astronomica in un potenziale capolavoro.

 

Cosa sono i flat field

I flat field sono delle speciali immagini di calibrazione che hanno l’unico compito di mappare le differenze di sensibilità dei pixel del CCD e le disomogeneità del piano focale. Tra queste rientrano difetti sempre presenti come la vignettatura, ovvero una caduta di luce ai bordi, ma anche polvere e sporcizia depositati sui filtri, sui correttori o sulla finestra del CCD stesso.

A parte la differente sensibilità dei pixel, tutti gli altri difetti da correggere dipendono in modo critico dal setup utilizzato, dall’orientazione della camera e dalla messa a fuoco. Basta variare anche di poco il punto di fuoco, ad esempio, per avere una diversa forma della polvere e della sporcizia sul campo ripreso; è sufficiente ruotare di qualche grado la camera per cambiare l’orientazione della vignettatura e dell’eventuale polvere e rendere quindi impossibile una correzione dell’immagine.

La prima regola, fondamentale, per i flat field è quindi la seguente: questi devono essere ripresi con lo stesso setup delle immagini che vogliamo correggere, con la medesima messa a fuoco e orientazione della camera. Al limite, se si fanno riprese RGB con ruota portafiltri e filtri parafocali, è ammesso fare i flat field, per ogni filtro, alla fine della sessione di ripresa, anche se sarebbe preferibile, soprattutto per lavori di precisione, fare flat field per ogni filtro prima di cambiarlo e passare a fare riprese con il successivo

 

I flat field servono davvero?

Per molto tempo, soprattutto a causa della relativa difficoltà nel fare corretti flat field, si è diffusa la versione astrofotografica della classica leggenda della volpe e dell’uva: fare dei buoni flat è difficile, quindi non sono poi così necessari. Basta saper usare Photoshop o PixInsight e tutto si risolve con dei bellissimi flat sintetici. Questa è una cosa orribile da dire e persino da pensare: toglietevi dalla testa di poter fare a meno dei flat field e di poterli creare con qualche programma di elaborazione. Nessun osservatorio professionale e nessun astrofotografo di alto livello fanno una cosa del genere e un motivo c’è. I flat field sono infatti fondamentali per ottenere immagini scientificamente accurate ma anche godibili dal punto di vista estetico, soprattutto per soggetti deboli. Chi non riesce ad apprezzarli, magari suggerendo di farli sintetici con qualche programma, non ha mai visto un buon flat field e il vero e proprio miracolo che può fare alle nostre immagini. Su questo punto, quindi, non si discute: sia che voi siate astrofotografi con ambizioni altissime o appassionati della domenica che scattano con un astroinseguitore e qualche malandato obiettivo fotografico ogni morte di Papa, i flat field sono l’unico vero strumento che può  trasformare ogni vostra foto in un potenziale capolavoro: non c’è elaborazione successiva che possa sostituirli.

Ecco allora la seconda regola: tutti coloro che fanno riprese del cielo profondo dovrebbero imparare a riprendere i flat field e usarli per correggere le proprie immagini. Per tutti si intende sia chi usa un telescopio che chi si accontenta di un obiettivo a grande campo.

 

I flat field eliminano tutti i gradienti di luce dovuti alla strumentazione usata. Non eliminano i gradienti presenti nel cielo ma cancellano polvere e vignettatura, e questa è un grandissimo aiuto per tutti i soggetti molto deboli.

I flat field eliminano tutti i gradienti di luce dovuti alla strumentazione usata. Non eliminano i gradienti presenti nel cielo ma cancellano polvere e vignettatura, e questa è un grandissimo aiuto per tutti i soggetti molto deboli. A sinistra un’immagine senza calibrazione con master flat field. A destra la stessa immagine calibrata: i dettagli sono molto più evidenti e il gradiente di luce con simmetria circolare è completamente sparito.

 

Un flat ti salva la vita: quando gli oggetti sono deboli, il campo pieno di polvere e il telescoio vignetta che è una bellezza, solo un buon flat field può salvare la nostra serata e mostrarci dettagli sull'oggetto catturato che non credevamo possibili. A inistra una situazione in apparenza compromessa. A destra la stessa immagine dopo la correzione con un buon flat field. Una trasformazione del genere non sarebbe  mai stata possibile a posteriori con nessun programma di elaborazione. Se pensate che una situazione del genere sia un'eccezione vi sbagliate. Anche se non ve ne accorgete, ogni immagine nasconde schifezze del genere che devono e possono essere corrette solo con un buon flat field.

Un flat ti salva la vita: quando gli oggetti sono deboli, il campo pieno di polvere e il telescoio vignetta che è una bellezza, solo un buon flat field può salvare la nostra serata e mostrarci dettagli sull’oggetto catturato che non credevamo possibili. A inistra una situazione in apparenza compromessa. A destra la stessa immagine dopo la correzione con un buon flat field. Una trasformazione del genere non sarebbe mai stata possibile a posteriori con nessun programma di elaborazione. Se pensate che una situazione del genere sia un’eccezione vi sbagliate. Anche se non ve ne accorgete, ogni immagine nasconde schifezze del genere che devono e possono essere corrette solo con un buon flat field.

 

Come fare un buon flat field

La nostra terza regola è semplice, ma richiederà diverse spiegazioni: un flat field è un’immagine di una sorgente uniformemente illuminata, priva di stelle, effettuata alla giusta esposizione, con il medesimo setup utilizzato per riprendere l’immagine che vogliamo correggere.

In questa frase si nascondono tutte le difficoltà nel riprendere un corretto flat field. Per non creare dispersione con parole superflue, vediamo le tappe fondamentali da seguire e i concetti da fissare bene in mente:

  • Un flat field è di fatto una particolare immagine di luce. E cosa abbiamo imparato dalla fotografia astronomica? Che in generale una buona foto è la media di diversi scatti che consentono di ridurre il rumore e che a questi scatti bisogna sottrarre il dark frame. Ecco allora la quarta regola: un buon flat field si ottiene dalla media di almeno una ventina di singoli scatti, tutti uguali, a cui poi sottraiamo il relativo master dark frame, ottenuto dalla mediana di almeno 5-7 scatti. In pratica bisogna trattare i flat field come se fossero una sessione (particolare) di fotografia astronomica. Al limite, soprattutto se usiamo una reflex, possiamo sostituire i dark frame con i bias frame: l’importante è che i singoli scatti di flat siano calibrati o con i dark o con i bias. Una volta eseguite queste operazioni possiamo mediare i flat calibrati, senza effettuare alcun allineamento, e si costruisce il nostro bellissimo master flat field. Molti software generano il master flat field in modo autoatico prima di calibrare i frame di luce, quindi di questa operazione possiamo non farci carico noi, a meno che non vogliamo avere il pieno controllo su quello che accade (e non è una cattiva idea questa!);
  • Il master flat field viene normalizzato al valore medio di ADU pari a 1 e poi diviso dall’immagine che vogliamo correggere. Questa operazione viene fatta dal software che si utilizza e noi non dobbiamo preoccuparcene più di tanto perché, se tutto è stato fatto nel modo giusto, l’immagine corretta presenterà un fondo cielo privo di vignettatura e di zone più chiare o scure dovute a polvere o sporcizia. Tutto molto semplice, vero? Abbiamo già finito, siamo tutti contenti… Non proprio.
A sinistra un singolo frame di flat field ben eseguito. A destra la media di 35 singoli scatti. Soffriamo già molto per far uscire un minimo di segnale dai soggetti astronomici con ore e ore di posa, non roviniamo tutto con dei flat non buoni: mediamo molti scatti per non aggiungere rumore.

A sinistra un singolo frame di flat field ben eseguito. A destra la media di 35 singoli scatti. Soffriamo già molto per far uscire un minimo di segnale dai soggetti astronomici con ore e ore di posa, non roviniamo tutto con dei flat non buoni: mediamo molti scatti per non aggiungere rumore.

Se siete stati infatti ben attenti, non vi ho detto come fare nella pratica un buon flat field: è questo il punto più delicato. Ecco allora qualche spunto per non dover diventare matti:

  • Flat box o generatori di flat field: sono una delle più grandi novità dell’astrofotografia dopo la maschera di bahtninov, un’idea semplice ma che ha rivoluzionato il modo di fare i flat field. Si tratta di speciali tappi da applicare all’obiettivo del telescopio, con dei led all’interno che illuminano una superficie semitrasparente che ne
    Generatore di flat field d aporre di fronte l'obiettivo del telescopio e con luce regolabile in intensità

    Generatore di flat field d aporre di fronte l’obiettivo del telescopio e con luce regolabile in intensità

    diffonde la luce in modo uniforme. Sono molto semplici e comodi da usare, non richiedono una lampada esterna, una superficie illuminata e neanche di spostare il telescopio, così possiamo fare i flat field tra un filtro e un altro senza perdere il puntamento;

  • Fogli o magliette bianche: sono i metodi storici, decisamente meno comodi delle flat box, e vanno bene per tutti gli strumenti, sebbene siano più indicati per diametri superiori ai 15 cm, per i quali costruire (o comprare) una flat box può essere dispendioso. In questi casi ci si arrangia: si pone di fronte al telescopio un foglio da disegno o un semplice A4 (dipende dalla larghezza dell’obiettivo), bloccandolo con una punta di nastro adesivo. Ci si assicura che l’obiettivo non sia ostruito dal nastro e che il foglio sia ben in tensione, poi si pensa alla fonte di luce: una normale lampada a LED, persino il flash della fotocamera del proprio cellulare, ad almeno a un metro di distanza e sistemata da qualche parte in modo stabile (ad esempio su un piccolo treppiede, su un muro, sul tetto della macchina…). È fondamentale che il fascio di luce sia perpendicolare al foglio che copre il telescopio per assicurare un’illuminazione omogenea: sarà quindi necessario portare il tubo ottico parallelo al terreno. Si può sostituire, soprattutto in caso di emergenza, il foglio da disegno con una maglia bianca, ancorata al tubo con abbondante nastro adesivo per assicurare che sia ben tesa e che non presenti pieghe di fronte all’apertura del telescopio.

 

Il tempo di esposizione

Eccoci arrivati alla questione più importante di tutte, all’operazione che se non è fatta bene può rovinare tutto quello che è stato eseguito fino a questo momento, compresi gli scatti che vogliamo calibrare con i nostri flat field. Trovare il giusto tempo di esposizione per i flat field sembra quasi un’oscura arte, ma con un po’ di nozioni sui sensori digitali e le loro proprietà possiamo fare chiarezza una volta per tutte.

Intanto iniziamo subito con il dare informazioni sulla durata minima degli scatti, che è determinata dalla velocità degli otturatori. Una buona regola empirica ci dice che il tempo sotto il quale non bisogna mai scendere è pari a circa 100 volte quello minimo che è possibile scattare. Questo accorgimento evita di riprendere di fatto l’immagine dell’otturatore che libera prima una parte del campo e poi l’altra, falsando i nostri flat field (l’otturatore non può sparire all’istante!). Per le reflex, capaci di scatti di 1/4000 di secondo, possiamo usare scatti da 1/40 di secondo in su. Per le camere CCD astronomiche dotate di otturatore meccanico parliamo di almeno 4-5 secondi. Per le camere digitali non dotate di otturatore è meglio stare almeno tra i 5 e i 6 secondi. Possiamo aumentare quanto vogliamo l’esposizione ma non dovremo mai andare sotto questi valori.

L’altro fattore che ci permette di scegliere il giusto tempo di esposizione, e/o la potenza della luce, o la distanza della lampada, è rappresentato dalla dinamica del sensore digitale e su questo punto si sono narrate le più disparate leggende, spesso con molte imprecisioni.

Per chi fosse interessato, nel prossimo paragrafo ci sarà qualche spiegazione tecnica in più. Al momento, infatti, ci interessa il lato pratico e in questi casi la regola aurea è semplice: un buon flat field deve avere la luminosità di picco più alta possibile prima di uscire dall’intervallo di linearità del proprio sensore.

Il pregio di ogni sensore digitale, infatti, è di avere una risposta lineare, ovvero l’intensità del segnale è direttamente proporzionale alla luminosità reale della sorgente o, in alternativa, al tempo di esposizione. Così, se per un’esposizione di 5 secondi ho un segnale di luminosità pari a 5000 ADU, raddoppiando l’esposizione avrò un segnale di 10 mila ADU, esattamente il doppio. Analogamente, se raddoppio la luminosità della sorgente, a parità di tempo di esposizione, dovrò avere il doppio del segnale. In un mondo ideale tutti i sensori digitali sono perfettamente lineari fino a quasi i livelli di saturazione del contatore analogico-digitale (65535 ADU per contatori a 16 bit), ma nel nostro imperfetto mondo amatoriale non è così ed è qui che sorgono i problemi: se infatti i flat field non sono fatti nello stesso intervallo di linearità delle immagini che vogliamo correggerem non avremo mai una calibrazione perfetta. Questo inciderà, poi, sui dettagli visibili e sulla qualità generale delle immagini.

Dopo aver fatto lustri di esperienza con i più disparati sensori digitali, ecco le mie indicazioni:

  • Se disponete di una camera CCD (o CMOS) con la porta antiblooming e contatore analogico-digitale a 16 bit, un buon flat field dovrebbe avere luminosità di picco attorno agli 8-9000 ADU. Solo nel caso in cui il fondo cielo delle immagini da correggere oltrepassi questi valori (ma allora avremo sbagliato i tempi di esposizione) si possono ottenere flat field la cui luminosità media (questa volta MEDIA, non di picco) abbia valori più simili possibile al fondo cielo delle immagini da calibrare. Se preferiamo visualizzare l’istogramma invece dei numeri, allora nel primo caso, con il fondo cielo delle immagini da correggere basso, un buon flat si ottiene con l’istogramma a circa 1/6 della scala massima;
  • Se disponete di una camera CCD senza porta antiblooming, quindi di grado scientifico, le cose sono molto semplici: un buon flat field si ottiene con un’esposizione che permette di arrivare a una luminosità di picco pari a circa la metà della luminosità massima consentita, meglio se un poco meno. Per convertitori analogico-digitali a 16 bit questo significa avere picchi di luminosità tra i 25 mila e i 30 mila ADU. Per gli amanti dell’istogramma, il picco dovrebbe stare circa a metà;
  • Per le reflex digitali varrebbe il punto 1) ma a causa del contatore a 14 bit i valori sono tutti scalati e non sempre di facile lettura perché molti software poi convertono la luminosità in scala a 16 bit. Per tagliare la testa al toro, quindi, meglio guardare l’istogramma, che dovrebbe stare a circa 1/3 della scala massima. Si tratta di valori leggermente superiori rispetto al caso 1) perché bisogna fare i conti anche con il rumore di questi sensori: avere flat troppo deboli potrebbe causare più problemi che altro. In questo caso gli scatti dovrebbero essere fatti a ISO bassi (non bisogna scattare alla stessa sensibilità dei frame da correggere, per i flat non serve, anzi, è deleterio perché introdurrebbe rumore) e in modo automatico, facendo scegliere alla fotocamera l’esposizione corretta, magari dicendole di sottoesporre di 1 stop. Se si usano obiettivi o teleobiettivi, il diaframma, invece, deve essere lo stesso usato per fare le foto che si vogliono calibrare. Anche in questi casi, se si è fatto l’errore di fare riprese astronomiche con un fondo cielo molto luminoso, i flat field dovrebbero avere un istogramma il cui picco cada nella stessa zona di luminosità.

È molto importante, una volta trovata l’esposizione giusta, a prescindere dal sensore usato, raccogliere almeno una ventina di flat field, meglio se sono 30: più ne medieremo e migliore sarà il risultato finale.

Queste sono indicazioni generali che vanno bene per tutti i casi. Ciò non toglie che ognuno di noi possa sperimentare: cosa succede ad esempio, se eseguo due set di flat identici, uno con la giusta esposizione e un altro invece con l’istogramma a 2/3 della scala? Funzionano lo stesso? Potrebbe essere, perché tutto dipende dalle proprietà del proprio sensore digitale. I valori dati, quindi, vanno bene in generale sempre, ma non è detto che siano gli unici possibili.  Se vogliamo andare nel dettaglio e capire meglio la storia della giusta esposizione dei flat field, dobbiamo comprendere meglio come funziona un sensore digitale e la sua elettronica.

 

 ADU e full well capacity: andiamo un po’ più a fondo

Ogni sensore digitale cattura la luce attraverso l’effetto fotoelettrico, descritto in modo completo per la prima volta da Albert Einstein nei primi del ‘900 (e che gli valse il premio Nobel). In pratica, per certi materiali, come il silicio, la luce visibile che li colpisce riesce a strappare un numero di elettroni dal reticolo cristallino proporzionale all’intensità della sorgente. Applicando una differenza di potenziale agli estremi del materiale, gli elettroni strappati via vengono fatti fluire ai lati, quindi raccolti, conteggiati e trasformati in segnali luminosi digitali, grazie al contatore analogico-digitale.

 

Ogni pixel di un sensore ha un numero finito di elettroni che può catturare. Quando il contenitore si riempie si arriva alla saturazione. Il numero di elettroni che può contenere un pixel è chiamato Full Well Capacity. L’elettronica del CCD trasforma il numero di elettroni in livelli di luminosità. Per i sensori astronomici i livelli di luminosità disponibili sono in generale 65536, pari a 16 bit. Un’elettronica fatta bene dovrebbe allora riempire questi livelli in modo tale che alla luminosità 0 corrisponda un pixel senza elettroni raccolti e al valore 65535 il massimo numero di elettroni che il pixel contiene. In questo modo si ha la massima efficienza nel convertire la full well capacity in dinamica reale dell’immagine.

Per fare questa operazione in modo adeguato, l’elettronica si serve di quello che viene chiamato guadagno. Si tratta di un coefficiente moltiplicativo da applicare al numero di elettroni raccolti, il cui meccanismo è molto semplice da comprendere. Supponiamo di avere un sensore con full well capacity di ogni pixel pari a 100 mila elettroni, e supponiamo di voler distribuire al meglio tutta questa dinamica nei 65536 livelli di grigio disponibili in un convertitore a 16 bit. Affinché si sfrutti al meglio questo contenitore, occorrerà stipare 100 mila elettroni in 65536 livelli di luminosità, ovvero assegnare a ogni livello di luminosità 1,5 elettroni. Questo è il guadagno: il numero di elettroni necessari per far conteggiare un livello di luminosità al contatore analogico digitale. In un mondo ideale, quindi, parlare di full well capacity in termini di elettroni o di livelli di luminosità è uguale.

In un mondo reale le cose non stanno così perché il guadagno di un sensore non è mai impostato in modo così preciso da far coincidere la saturazione reale dei pixel con quella del contatore analogico-digitale. Di solito si tiene un po’ di margine, assicurandosi che la saturazione reale avvenga prima di quella del contatore. Di conseguenza, per molte camere CCD già verso i 50 mila ADU si ha di fatto la saturazione ma i valori possono cambiare di molto da modello a modello. In questi termini, parlare di ADU come il discriminante per un buon flat field è, a voler essere pignoli, un po’ approssimativo. Quando ad esempio ho detto che per camere senza antiblooming si dovrebbe arrivare a circa metà della dinamica, ci si dovrebbe riferire alla dinamica reale, ovvero al numero di elettroni e non al corrispettivo ADU, perché ci sono camere CCD che a 50 mila ADU presentano già saturazione e altre che lo fanno a 60 mila: in questi casi qual è il valore da prendere come riferimento per avere un flat field, esposto alla vera metà della dinamica? In realtà questa è una questione di “lana caprina” perché le differenze tra i CCD amatoriali non sono così grosse e delicate da rendere necessario l’uso poco pratico della dinamica reale in termini di elettroni e di fare poi la conversione attraverso il guadagno per capire a quanti ADU corrisponde il giusto intervallo.

Se siamo perfezionisti, tuttavia, un buon consiglio è di effettuare un test di linearità del nostro sensore. In questo modo, lavorando in ADU, possiamo vedere dove si verifica la reale saturazione e capire anche qual è la massima luminosità da poter utilizzare per i nostri flat field prima che la risposta cominci a diventare non lineare. Ecco quindi giustificati i valori dati in precedenza, un po’ conservativi e definiti indicativi per ottenere un buon flat field. Ecco, inoltre, giustificato il senso di un mio precedente post in cui si parlava di test di linearità e si arrivava a definire i valori ottimali per fare i flat field, che guardacaso corrispondono a quelli menzionati in questo caso e presi come universali.

C'è davvero bisogno di descrivere a parole la bellezza dell'aurora?

Come, dove e quando ammirare le magnifiche aurore boreali

Da Settembre a inizio Aprile di ogni anno, per una nicchia di osservatori dell’emisfero boreale che vivono nei pressi del circolo polare artico, si apre la stagione più bella dell’anno, quella delle aurore boreali. Mentre alle medie latitudini dobbiamo fare i conti con la stagione delle piogge per antonomasia, l’autunno e l’inizio della primavera, o con le nebbie dell’inverno, c’è una parte del mondo e una crescente schiera di appassionati di cielo e Natura che attendono con ansia il periodo migliore per fare l’esperienza naturalistica più bella della propria vita. Questo post rappresenta una piccola guida per tutti coloro che almeno una volta nella vita vorranno ammirare lo spettacolo più bello e impressionante che potremo mai vedere su questo piccolo pianeta azzurro.

 

Cosa sono le aurore secondo la scienza

A livello prettamente fisico, le aurore polari sono delle chiazze di luce, tipicamente verde, che si mostrano nei cieli notturni a latitudini molto settentrionali (aurore boreali) o meridionali (aurore australi), estremamente variabili in forme, colori e intensità e che a volte possono diventare più luminose della Luna piena e muoversi con una rapidità pari a quella di un fulmine.

Alla base di questo particolare fenomeno ci sono due ingredienti: il Sole e il campo magnetico terrestre. Senza entrare in nozioni troppo tecniche, le aurore si producono quando le particelle cariche espulse dal Sole e chiamate vento solare vengono incanalate verso le regioni polari dalle linee del campo magnetico terrestre e arrivano a impattare con gli strati più alti della nostra atmosfera. Ogni volta che una particella di vento solare, che viaggia a diverse centinaia di chilometri al secondo(!), collide con un atomo o una molecola che compone la nostra aria (tipicamente ossigeno e azoto) strappa degli elettroni e ionizza l’atomo colpito. Circa un miliardesimo di secondo più tardi l’atomo riacquista l’elettrone perso e questa transizione fa emettere luce. Le aurore polari sono quindi il modo in cui gli atomi cercano di tornare al loro stato iniziale dopo essere stati letteralmente sconvolti da collisioni violentissime. Ma mai una ferita causata da una collisione a centinaia di migliaia di chilometri l’ora si manifesta con uno spettacolo tanto sublime. Sì, perché al di là della sterile spiegazione fisica, le aurore sono uno spettacolo che deve essere visto, anche se non si conosce la teoria di fondo; deve essere contemplato in rigoroso silenzio e mostrando un doveroso rispetto per la magnificenza della Natura, che si rivela a noi con un’eleganza senza eguali spesso proprio in risposta a eventi dall’enorme violenza.

Dinamica per la formazione delle aurore: alcune particelle cariche provenienti dal Sole riescono a penetrare il campo magnetico terrestre nei pressi dei poli e dallo scontro con le molecole d'aria si innescano le aurore.

Dinamica per la formazione delle aurore: alcune particelle cariche provenienti dal Sole riescono a penetrare il campo magnetico terrestre nei pressi dei poli e dallo scontro con le molecole d’aria si innescano le aurore.

 

Cosa sono le aurore, secondo la nostra vista

Ecco allora che esiste un’altra spiegazione alla domanda “Cosa sono le aurore?” che trascende qualsiasi razionalità, qualsiasi oggettività e lascia libero sfogo alle emozioni e alle descrizioni di chi quel fiume di luce irrequieto nel cielo l’ha visto con i propri occhi e l’ha subito con tutto sé stesso.

In una normale serata nel circolo polare artico si potrà sempre osservare un debole arco verdastro, simile a una striscia di foschia o a una nuvola illuminata dai lampioni, come è comune osservare dalle nostre inquinate città. “E’ quella lì l’aurora? Una striscia lattiginosa che somiglia alla Via lattea estiva o al cielo di Milano quando sta per arrivare la nebbia? E i colori delle foto non ci sono?” Sono queste le domande che ho sentito da chi si è spinto fin lassù, in Islanda o in Lapponia, e non è stato particolarmente fortunato. Togliendo il punto interrogativo, invece, si trasformano in affermazioni spesso dette da chi le aurore, quelle vere, non le ha mai viste e, forse, non si è mai spostato oltre i 60° di latitudine nord.

Le aurore, infatti, possono essere lievi e potenti, appena accennate o illuminare il paesaggio circostante, sembrare statiche o muoversi con la violenza di un fiume in piena. Tutto dipende dal Sole e, in parte, anche dalla Terra. Le aurore possono spingersi fino a latitudini medie, a Londra o Parigi, persino in Italia (l’ultima aurora italiana risale al 2003) ma sono solo una blanda copia di quello che si vedrebbe nella giusta località, lì nel grande nord.

Ecco allora che durante i momenti di maggiore attività, quando si verificano delle tempeste geomagnetiche, l’aurora diventa più spettacolare di qualsiasi fotografia, perché uno scatto statico non può catturare il movimento rapidissimo di strutture di luce che si espandono su tutto il cielo e che mostrano dettagli fini impossibili da immortalare in una fotografia esposta per qualche secondo. Nei momenti in cui l’attività è almeno moderata le aurore diventano uno spettacolo che non si può dimenticare, che sovrasta qualsiasi altra cosa vista fino a quel momento, in grado di proiettare senza problemi ombre in terra o di rendersi visibili quando ancora c’è la luce del tramonto. Immaginate una tavola bianca sulla quale far scorrere in modo casuale e caotico tre grossi pennelli imbevuti di colore fino a gocciolare: verde, giallo, rosso, e tutte le sfumature che si formano quando quelle strisciate si incontrano, si sovrappongono, si fondono insieme creando mulinelli di colore che all’improvviso sembrano aprirsi come un ombrello e cadere come pioggia su di noi. Non c’è ombrello che possa ripararci da tanta bellezza, né, per fortuna, alcun timore che giustifichi una fuga al riparo. Non c’è pericolo, se non quello di esporre i nostri occhi a una bellezza che in pochi riescono ad assimilare senza emozionarsi, senza far scendere una lacrima, senza gridare di gioia al cielo e abbracciare a caso tutte quelle sconosciute persone che impavide si sono ritrovate a osservare insieme lo stesso fenomeno. In un momento, quando lo decide il cielo a suo insindacabile giudizio, tutto cambia, tutto si accende. Il freddo scompare, il tempo si ferma, il cuore inizia a far rumore e niente sarà più lo stesso. Un secondo o dieci, un’ora o 5 minuti: nessuno sa quanto durerà ma basterà comunque a impressionare quell’immagine sin nella parte più profonda della nostra anima, per sempre. Altro che fotografia: le aurore, quelle vere, sono molto più belle, evidenti e spettacolari se ammirate a occhio nudo!

C'è davvero bisogno di descrivere a parole la bellezza dell'aurora?

C’è davvero bisogno di descrivere a parole la bellezza dell’aurora? Per capire quanto è brillante, questa foto  stata fatta al tramonto. In primo piano Venere, in alto a sinistra le Pleiadi.

 

Dove, quando e quanto tempo?

Il dove è semplice: la massima frequenza (e spettacolarità) di attività aurorale si verifica proprio a cavallo del circolo polare artico. Per noi europei ci sono solo due possibilità: la parte settentrionale della Scandinavia o l’Islanda, entrambi dei luoghi incantevoli anche a livello paesaggistico. Se cerchiamo la vacanza della vita allora bisogna andare in Islanda, girarsi l’isola a bordo di un’auto e allontanarsi dalla capitale se si vuole vedere per bene l’aurora. Durata consigliata: da 10 giorni in su.

Per un’esperienza meno impegnativa dal punto di vista temporale ed economico, la regione della Lapponia attorno al parco nazionale di Abisko è perfetta e gode a detta di molti delle condizioni meteo più favorevoli dell’intero nord. In questa, che è la zona meno abitata dell’Europa, ci sono pochi hotel, ma tutti sono attrezzati per l’osservazione delle aurore (e molti hanno anche splendide piste da sci, per gli amanti), con ampi piazzali bui, baite con vetrate e riscaldate, e visite guidate (molto costose però!). In effetti posso confermare che il microclima attorno ad Abisko è unico e assicura molte più nottate serene dell’Islanda o dell’alternativa più economica di tutte: Tromsø. Questa cittadina è situata sulla costa norvegese ed è immersa nei tipici fiordi che caratterizzano questa terra. Sebbene in linea d’aria disti poche centinaia di chilometri dall’entroterra lappone, gode di un clima molto diverso: il freddo non è mai eccessivo perché risente della corrente del golfo, ma in compenso il meteo è in media molto più brutto e instabile dell’entroterra. Può capitare anche una settimana di cielo totalmente coperto: e che ce ne facciamo di temperature più clementi se poi l’aurora non la possiamo vedere? In ogni caso questa è la meta più economica: a titolo di esempio, un viaggio di 3 notti e 4 giorni compreso di volo, hotel, abbigliamento termico e automobile a noleggio può costare circa 500 euro a persona a Tromsø e fino al doppio ad Abisko. Per l’Islanda i prezzi sono ancora più alti.

Percentuale di notti in cui si vede l'aurora: né troppo a nord, né troppo a sud. In Islanda e nella parte settentrionale della Scandinavia l'aurora, anche minima, c'è sempre.

Percentuale di notti in cui si vede l’aurora: né troppo a nord, né troppo a sud. In Islanda e nella parte settentrionale della Scandinavia l’aurora, anche minima, c’è sempre.

 

Per il quando, invece, le cose si complicano un po’.

Le tempeste magnetiche e i momenti in cui le aurore sono più intense si possono provare a prevedere con al massimo 2-3 giorni di preavviso, quindi a meno di non essere degli avventurieri disposti a prenotazioni last minute, dobbiamo arrenderci all’idea che in questo tipo di viaggio serva anche un po’ di fortuna. Può succedere che in una settimana non si riesca a vedere quasi mai un’aurora decente e poi questa esploda il giorno che siamo tornati a casa (o il giorno prima di arrivare.. Una triste storia vera). Oltre a programmare un soggiorno più lungo di un paio di notti, ci sono degli accorgimenti che potrebbero migliorare le nostre possibilità.

L’attore principale di questa opera teatrale ricca di meravigliosi e improvvisi colpi di scena è il Sole, con la sua attività. Ci sono due principali meccanismi con cui si possono innescare spettacolari aurore e il più importante è causato dai CME, espulsioni di massa coronale, e dai brillamenti; entrambi sono fenomeni generati dalle grandi macchie solari. Non si possono prevedere ma è indubbio che più macchie ci sono sul Sole e maggiore è la possibilità che qualche particella in più venga scagliata nello spazio e arrivi fino alla Terra. Ragionando quindi sul lungo periodo, i momenti in cui le aurore sono più intense sono a cavallo dei massimi di attività del Sole. La notizia brutta è che il massimo solare è passato nel 2012-2013 e ora siamo diretti verso un minimo dell’attività. Le grandi aurore sono quindi più rare perché a reggere la baracca c’è in pratica solo il secondo, e più debole, meccanismo: i buchi coronali. Si tratta di veri e propri buchi nell’atmosfera del Sole (corona solare) dovuti alla debolezza locale del campo magnetico solare. In questo modo le particelle di vento solare che partono dalla superficie non vengono intrappolate o deviate dalla corona in modo efficiente e possono raggiungere la Terra in maggiori quantità, scatenando tempeste magnetiche anche con un Sole privo di macchie, quindi senza il motore principale che alimenta il fenomeno. Per ritrovare aurore molto brillanti per gran parte del tempo, quindi andare quasi a colpo sicuro, bisogna aspettare il prossimo massimo solare, previsto per il 2023-2024. Se non siamo così pazienti e accettiamo il rischio di non riuscire a vedere una tempesta ma ci accontentiamo di una modesta attività aurorale (sempre presente), allora tutti gli anni sono buoni, anche se ci sono periodi più favorevoli di altri.

Sembra una banalità ma meglio chiarire anche questo aspetto per chi magari non è proprio esperto del grande nord: di sicuro dobbiamo andare quando esiste la notte astronomica, escludendo i mesi da aprile ad agosto, in cui la luce solare non abbandona mai la scena e vedere l’aurora è impossibile. I momenti migliori, sia dal punto di vista climatico che dell’attività, si verificano a cavallo degli equinozi, quindi seconda metà di settembre o seconda metà di marzo. Si potrebbe anche pensare di fare una follia: andare a dicembre quando è sempre notte e si possono vedere le aurore 24 ore al giorno (o quasi) ma io lo sconsiglio. Le temperature sono basse, anche -40°C in Lapponia (più clementi lungo la costa norvegese e islandese ma siamo sempre molto sotto lo zero); la Natura, che è favolosa, non si può ammirare in pieno, girare in auto è certamente più pericoloso, il clima è peggiore e le aurore tendono a essere un po’ più pigre rispetto ai periodi a cavallo degli equinozi, quando si può godere di 12 ore di luce e altrettante di buio. Alcuni fotografi preferiscono le notti con la Luna perché illumina il paesaggio ma io consiglio di scegliere dei periodi a cavallo della Luna nuova. Mai andare con la Luna piena perché le aurore, anche quelle intense, saranno sovrastate dalla luminosità del nostro satellite naturale e rese meno spettacolari.

La durata del soggiorno dipende dai nostri impegni: si può fare un week end lungo di 3 notti, come ho fatto io per due anni di seguito, e avere una fortuna sfacciata di trovare sia il sereno che una tempesta magnetica che ha illuminato a giorno il paesaggio (ma era a cavallo del massimo solare, in pratica era più difficile non trovare un’aurora intensa che trovarla!), oppure optare per un soggiorno più lungo e con ritmi più blandi. Una settimana, quindi, sembra essere il compromesso ideale tra spesa, impegno e possibilità di trovare un’aurora in forma e tempo bello.

Per godersi lo spettacolo in sicurezza e con le maggiori possibilità di trovare tempo bello, è meglio seguire qualche semplice consiglio.

Tempesta magnetica, con indice Kp pari a 7: il cielo si accende di colori in movimento.

Tempesta magnetica, con indice Kp pari a 7: il cielo si accende di colori in movimento.

Come organizzare il viaggio

Il viaggio inizia almeno 2-3 mesi prima, se vogliamo trovare condizioni economiche vantaggiose. Se sappiamo muoverci su internet, si può organizzare tutto da soli. Quello che ci serve sono:

  • Voli di andata e ritorno per la località scelta. expedia.it o www.skyscanner.it per trovare le migliori tariffe;
  • Dove soggiornare. Anche qui possiamo controllare expedia.it o www.booking.com ad esempio. Il consiglio è scegliere un hotel attrezzato non nel centro di una città, così se il tempo sarà bello potremo ammirare l’aurora addirittura dalla finestra della camera, come è capitato a me una notte di quasi tre anni fa. In alternativa, se preferiamo spendere meno, potremo scegliere una sistemazione in città, ad esempio Tromso, ma dobbiamo essere coscienti che dovremo comunque spostarci, anche di diversi chilometri, per vedere bene l’aurora;
  • Noleggio auto. Stiamo andando in luoghi selvaggi e con spazi enormi: è impensabile cercare di spostarsi con mezzi pubblici (che spesso neanche ci sono). Un’automobile è obbligatoria, quindi, sia per raggiungere l’hotel dall’aeroporto che per visitare le zone alla ricerca della natura diurna e dell’aurora notturna. Le condizioni meteo infatti non sono stabili e può capitare, soprattutto se ci troviamo lungo la costa norvegese, di dover affrontare centinaia di chilometri di guida per trovare un cielo sereno. Dobbiamo quindi essere mentalmente pronti al nostro obiettivo: se vogliamo vedere l’aurora potremo doverla cercare con le unghie e con i denti. Le strade sono generalmente tenute bene ma nei mesi invernali, fino ad aprile, sono spesso coperte di ghiaccio. Le auto noleggiate hanno equipaggiamento invernale e sono dotate di ruote chiodate per affrontare quasi ogni terreno (persino laghi e fiumi ghiacciati, ho già provato), quindi la guida, se condotta con molta prudenza, è di certo più sicura di quanto accade nelle nostre città quando cade il primo nevischio misto ad acqua. Nei principali aeroporti: Kiruna se si sceglie Abisko, Tromso se si sceglie la costa, Reykjavik per l’Islanda, sono presenti le principali agenzie di noleggio, quindi possiamo dare un’occhiata a expedia.it o www.rentalcars.com per noleggiare la nostra auto, orientativamente quando scegliamo di prenotare il volto. Se abbiamo un hotel nel centro di una città, l’auto serve a prescindere dal meteo perché dobbiamo allontanarci dalle luci il più possibile per ammirare al meglio lo spettacolo (l’ho già detto, ma se l’ho ripetuto anche qui un motivo c’è!);
  • Noleggio abbigliamento termico. Per quanti vestiti pesanti decideremo di portare in valigia, non saranno mai abbastanza per proteggerci dalla notte artica. Il consiglio è quindi semplice: lasciare a casa l’armadio della roba pesante e noleggiare direttamente sul posto l’abbigliamento adatto. Per circa 30-40 euro al giorno si può prendere tutto l’occorrente: scarponi da neve, tuta imbottita simile a quelle degli astronauti, guanti, cappello ed eventualmente maschera per gli occhi. Su internet si trovano molti negozi di noleggio nelle principali città. Alcuni hotel, soprattutto nella zona di Abisko, forniscono direttamente il servizio di noleggio dell’abbigliamento: basta contattarli (tutti parlano inglese).
    Un consiglio è d’obbligo se avete intenzione di fare molti spostamenti, soprattutto in Scandinavia. L’abbigliamento che noleggiate in città più miti come Tromso non è adatto alle rigide notti della Lapponia, pur essendo vicine in linea d’aria e quindi raggiungibili in auto in un paio d’ore: tenetelo presente per non dover soffrire il freddo per tutta la notte e nel caso fate presente al negozio di noleggio che volete abbigliamento adatto anche per climi più freddi.
  • Tour guidati. In Islanda, ma soprattutto in Scandinavia, ci sono molte agenzie che organizzano tour guidati per osservare le aurore. La realtà, secondo me, è che non servono: basta un’auto e un posto scuro per ammirare l’aurora senza l’aiuto di una guida che vi chiederà prezzi stratosferici. Questa è una costante di quelle regioni: tour, escursioni e visite guidate potrebbero costare anche ben oltre 100 euro a persona; valutate quindi bene se ne vale la pena o meno.
  • Cellulare e un piano dati adatto all’estero. Probabilmente vi sconvolgerà la cosa, ma anche nel posto più remoto della Lapponia, in mezzo a un lago ghiacciato che si perde a vista d’occhio, senza la minima presenza di civiltà per decine e decine di chilometri, il vostro cellulare segnerà piena ricezione della rete 4G. Se avevate in mente di staccare dalla vita di tutti i giorni, allora meglio spegnere il telefono perché non siete in un paese sufficientemente arretrato da permettervi l’isolamento completo. In realtà, scherzi a parte, la ricezione cellulare in posti deserti e difficili come la Lapponia è estremamente comoda e importante, perché di fatto non saremo mai isolati dal mondo e in caso di aiuto basterà fare una telefonata. Il consiglio, quindi, anche per avere a disposizione mappe della zona e un collegamento a internet per controllare meteo e previsioni dell’aurora, è quello di attivare un’offerta internet valida per l’estero con il proprio operatore e affrontare quindi il viaggio avventuroso in maniera molto più tranquilla.
Il magnifico deserto di ghiaccio della Lapponia.

Il magnifico deserto di ghiaccio della Lapponia.

 

Altri spiccioli consigli per un viaggio indimenticabile

  • In caso di problemi, tenete presente che siete in un posto estremamente civile: se le sporadiche auto vi vedranno a bordo strada con le 4 frecce accese o con gli abbaglianti di notte, si fermeranno tutte per assicurarsi che state bene e che non vi serve aiuto. Se non volete essere disturbati o creare falsi allarmi, quindi, spegnete frecce e fari: è il modo per dire che non vi serve aiuto.
  • La popolazione è generalmente molto disponibile e cordiale. Se vi serve qualcosa non abbiate paura a chiedere. Se siete in macchina lungo la Northern Lights road, nel mezzo della tundra lappone, e non sapete dove fermare la vostra auto e scendere per ammirare l’aurora perché la neve ai lati della strada è alta un metro, potrete parcheggiare nel cortile di una delle poche casette che incontrerete sul percorso. E sebbene per noi appaia impossibile che un proprietario di casa accolga tre auto piene di gente incappucciata, che parlano una lingua straniera e che hanno occupato il suo suolo, con un saluto, una lunga chiacchierata e un invito a parcheggiare di fronte alla sua porta e restare a osservare l’aurora lì tutta la notte, in Lapponia questo succede davvero e non si rischia un colpo di fucile, come può invece capitare nelle nostre ben più pericolose campagne;
  • L’attività dell’aurora si può tenere sotto controllo in tempo reale e si possono avere anche previsioni abbastanza accurate fino a 48 ore. Ci sono tanti siti da controllare quindi per capire cosa ci aspetta nel futuro prossimo. Eccone un paio: spaceweather.com e http://www.aurora-service.eu/aurora-forecast/ . Le intensità delle aurore si misurano spesso con un indice denominato Kp: valori inferiori a 3 indicano un’aurora molto debole. Da 3 a 5 indicano un’attività moderata che comincia a essere spettacolare e oltre 5 assicurano uno spettacolo tanto luminoso da abbronzare, di quelli che non si scorderanno mai più. Più è intensa la tempesta magnetica e più a sud scendono le aurore. Ecco allora che se l’indice Kp arriva a 9 queste si possono vedere, seppur tenui e in lontananza, persino nel nord Italia! I valori possono cambiare nel giro di un’ora, quindi teniamoli sott’occhio sempre: le previsioni a breve termine, come in meteorologia, sono decisamente più affidabili, quindi se entro qualche ora è prevista una tempesta è molto probabile che ci sarà!
Una spettacolare aurora al tramonto, dal cortile di casa di un ospitale abitante di quelle fredde e spettacolari regioni.

Una spettacolare aurora al tramonto, dal cortile di casa di un ospitale abitante di quelle fredde e spettacolari regioni.

 

Come osservarle e fotografarle

Le aurore sono uno spettacolo che non richiede strumenti per essere ammirato: serve solo un cielo libero da nuvole e lontano dalle luci delle città. Per questo motivo, se siamo muniti di auto e di una mappa sul cellulare, possiamo scegliere i posti più belli e suggestivi per godersi lo spettacolo. Possiamo scegliere un suggestivo lago ghiacciato, come mi è capitato due anni fa, o un fiordo non ancora congelato in cui si rifletteranno le luci dell’aurora: le opportunità per rendere ancora più indimenticabile la nostra avventura sono tantissime e le possiamo trovare con le nostre forze, perché questo è un viaggio in cui possiamo decidere noi cosa fare, dove e in che modo, in piena libertà. Se abbiamo l’abbigliamento giusto la notte non sembrerà molto fredda, grazie anche all’umidità in genere sempre bassa e potremo starcene fuori per ore. Le aurore in generale si vedono meglio nella prima parte della notte, ma sono sempre molto imprevedibili, un po’ come le stelle cadenti. Anche nella serata in apparenza più tranquilla può verificarsi un momento

Quando l'aurora fa sul serio diventa più luminosa delle stelle più brillanti, cancellandole letteralmente dal cielo.

Quando l’aurora fa sul serio diventa più luminosa delle stelle più brillanti, cancellandole letteralmente dal cielo.

in cui di punto in bianco tutto si accende come se ci fosse un incendio in cielo. E in effetti questo è quanto è accaduto a me ormai quasi due anni fa. Di ritorno da una bella serata in Lapponia, l’aurora sembrava ormai essersi spenta, con il cielo che era diventato nero come la pece a causa dell’assenza totale di luci. Dopo un rifornimento di carburante in una remota stazione, a un certo punto, guardando dal parabrezza, notai che il cielo si era improvvisamente tinto di verde. Gettata l’auto su una provvidenziale piazzola di sosta e scesi senza nemmeno indossare i pesanti abiti termici, abbiamo assistito a uno spettacolo di indescrivibile potenza, che riesco ancora ad ammirare nitidamente mentre sto scrivendo queste parole, con il cuore che ricomincia a battere all’impazzata e le mani che sudano, proprio come in quel momento, in cui a -18°C in felpa e scarpe da ginnastica sentivo tutto tranne che freddo.

Se vogliamo tentare di immortalare uno spettacolo del genere, ci basta una camera digitale, meglio una reflex con obiettivo grandangolare da 8-14-18 mm, su un modesto treppiede da pochi euro. A seconda della potenza dell’aurora possiamo impostare 800 ISO, diaframma tutto aperto e scatti da qualche secondo fino a 30 secondi. Andare oltre non conviene anche con aurore deboli perché le foto verrebbero mosse a causa del moto della Terra e dell’aurora stessa. Nei momenti più intensi ho visto un mio amico scattare a mano a 3200 ISO e 1/15 di secondo a f3.5 e bruciare alcune parti della foto a causa della potenza dell’aurora!

Se volete vedere altre mie foto delle aurore, cliccate qui.

Se volete leggere il resoconto del mio ultimo viaggio, scritto in tempo reale, cliccate qui.

 

 

Uno screenshot direttamente dal Winpad W700 di MaxIm DL durante l'acquisizione e la guida sul finire di una serata di fotografica.

Sistemi portatili per la fotografia astronomica..a confronto!

Chi si dedica alla fotografia astronomica, sia i più esperti che chi è agli inizi, deve fare i conti con l’autoguida e con la necessità di collegare la camera di guida a un computer che gestisca questa importantissima fase. Un notebook è obbligatorio per chi usa una camera CCD per fare riprese, mentre chi impiega le reflex ha a disposizione una soluzione chiamata autoguida standalone che permette, previa molta pazienza e/o denaro, di non utilizzare il computer.

Qualsiasi sia la vostra situazione, a meno di non disporre di un osservatorio privato (magari), usare un computer durante le sessioni di fotografia astronomica ha molti inconvenienti, tra cui:

  • Dover trasportare un pesante e ingombrante notebook con noi e sistemarlo in un luogo sicuro, che nel buio della notte e nelle impervie situazioni in cui piazziamo i telescopi (erba alta, alberi, terreno scosceso…) non è proprio semplice;
  • L’alto consumo di corrente, che supera spesso i 3-4 ampere e costringe a essere dipendenti dalla corrente elettrica o a viaggiare con ingombranti e pesanti batterie da auto per non rimanere a secco durante la notte.
  • Inoltre i notebook di solito hanno un’alimentazione superiore a 12V, il che rende necessario collegare un inverter ad una batteria (= altro esborso economico)

Fino a qualche anno fa non c’erano molte alternative: o un notebook, magari piccolino, o un’autoguida standalone che spesso, però, rappresenta quasi un terno al lotto perché è sicuramente più difficile da gestire rispetto a quanto possano fare software come MaxIm DL o PHD.

Oltre un anno fa, PrimaLuceLab ha introdotto sul mercato Eagle, un sistema che racchiude all’interno di un unico case modulare, un bridge di alimentazione, un vero e proprio computer desktop con Windows 10 Enterprise modificato e ottimizzato per Eagle e quindi per l’uso astronomico e la possibilità di installarlo in diversi punti tra montatura e telescopio grazie al sistema Plus. Eagle non è solamente un “contenitore”, ma al suo interno contiene una suite di diversi software oltre al fatto che possiamo installare tutti i programmi che vogliamo, inoltre potendo essere montato in modo solidale con il nostro strumento, possiamo staccare tutto insieme, riporre e…in 2 minuti abbiamo smontato e rimontato! Ovviamente come in tutte le cose ci sono i pro ed i contro, andiamo ad analizzarli.

Se Eagle rappresenta, al momento attuale, la più avanzata soluzione dedicata per l’astrofotografo itinerante, è anche vero che il costo non è detto che sia alla portata di tutti vista la mole di caratteristiche avanzate implementate. La domanda posta è: si riesce ad alleggerire lo stesso il setup, perdendo ovviamente di funzionalità complessive, ma ad un minor prezzo?

Ora ci sono i Windows Tablet, dei tablet che montano una versione ottimizzata (=depotenziata) di Windows, ma che sono pratici quanto un normale tablet Android o iOS. Una soluzione del genere permette di avere una versatilità simile a quella di un di un pc, sul quale possiamo installare i nostri programmi per la gestione della ripresa e della guida, con la comodità di un tablet, compreso un consumo nettamente ridotto rispetto ai notebook. Di fatto possiamo trasformare, almeno la fase di autoguida, come se fosse fatta con una camera standalone, solo che avremo la potenza di un software installato come PHD, l’economicità di una camera usb  con porta ST4 e la comodità di uno schermo LCD da almeno 7 pollici, senza gli ingombri e i problemi tipici di un computer, anche se dobbiamo vedere dove sistemare il tablet dato che non prevede sei sistemi di montaggio nativi sul nostro telescopio.

Ma se invece vogliamo tenerci il nostro PC/Tablet e abbiamo solo l’esigenza di ottimizzare il più possibile il setup (cavi, hub usb, bridge di alimentazione..), abbiamo una reale alternativa senza doverci autocostruire qualcosa noi?  Per fortuna si, ci ha pensato Geoptik con il Various power supply, che è un bridge di alimentazione avanzato con un hub usb integrato. Offre 4 prese USB 2.0, 1 uscita da 5A (jack 2.1×5.5), 2 uscite jack da 2A (2.1×5.5), 2 uscite per fasce anticondensa kendrik compatibili, 2 prese accendisigari, 1 uscita con regolazione del voltaggio (ideale per alimentare le reflex usando una falsa batteria) e di serie viene fornito con un cavo di alimentazione che si collega direttamene ad una batteria da auto, dato che il Varius alimenta tutto, dalla montatura alle camere CCD. Il various si può installare sul telescopio (non in modo solidale come Eagle, ma comunque ha una basetta per rimuoverlo facilmente) e tutti i device sono connessi a lui. Quindi esce un cavo usb che andrà al nostro PC/Tablet.

Per scrivere questo post mi sono indirizzato sul tablet più economico che si possa trovare in giro: si chiama Mediacom WinPad W700, un oggetto con schermo da 7 pollici, dotato di Windows 10 e dal prezzo di circa 40 euro (sì, 40 euro!). Dopo averlo provato per più di un mese posso dare qualche consiglio per farlo funzionare al meglio e per gestire, proprio come se fosse un normale pc, le fasi di guida e persino di acquisizione delle immagini, sebbene con qualche limite.

Il tablet ha un processore quadcore da 1,33 GHz, un GB di RAM e solo 16 GB di spazio disco, che può essere aumentato grazie allo slot per una microSD. Il punto debole di questa soluzione è la presenza di una sola porta micro-usb, quella che in pratica si usa per ricaricarlo. Come facciamo allora per farlo funzionare? E un GB di RAM basta per la nostra sessione di riprese?

Le risposte sono affermative, a patto di comprare qualche altro economico accessorio e di ottimizzare un poco il sistema operativo.

Il tablet Windows Winpad W700: la soluzione più economica per gestire le nostre sessioni di fotografia astronomica

Il tablet Windows Winpad W700: la soluzione più economica per gestire le nostre sessioni di fotografia astronomica

Ottimizzazione del sistema operativo

Windows 10, al contrario degli immediati predecessori, è un sistema leggero e stabile, che non ha problemi anche con driver vecchi (ci ho fatto girare camere SBIG del 2005). Il GB di RAM di cui è dotato il tablet è più che sufficiente se si disattivano servizi inutili come l’assistente vocale Cortana e si eliminano le (poche) animazioni grafiche. In questo modo il sistema operativo usa solo mezzo GB di RAM; il restante è tutto per noi e vista la leggerezza dei programmi di guida e di acquisizione è una quantità più che sufficiente. A meno che non si abbiano dei problemi di instabilità nativa che però non ho riscontrato sui due esemplari che ho testato, ci sono tre operazioni importanti da fare per rendere Windows ancora più veloce e stabile:

  • Disattivare l’avvio rapido del sistema operativo, che è attivato di default e che a volte può causare il riavvio improvviso del tablet poco dopo che è stato acceso (nelle opzioni di risparmio energia, alla voce Scegliere cosa fanno i pulsanti di accensione, si clicca su Modifica le impostazioni attualmente non disponibili e su Impostazioni di arresto deselezionare Avvio Rapido);
  • Se si utilizza solo per le sessioni fotografiche, il consiglio è di tenerlo scollegato dalla rete internet e in questo modo NON fargli mai scaricare gli aggiornamenti di Windows, che tendono a essere pesanti e a riempire il poco spazio disponibile. Questo non toglie che sul campo potremo collegarlo via wireless a una rete locale e così controllare con il nostro smartphone da dentro la macchina o dentro casa come sta andando la sessione di ripresa (su questo tornerò alla fine del post);
  • Disattivare la sospensione automatica dopo qualche minuto e attivare solo lo spegnimento dello schermo. In questo modo eviteremo la possibile sospensione dell’attività durante le sessioni di fotografia e allo stesso tempo faremo spegnere lo schermo al tablet quando tutto andrà bene durante la serata e non ci sarà bisogno di toccarlo;
  • Attivare la modalità Desktop di default (Impostazioni à Sistema à Modalità tablet e alla voce All’accesso impostare Vai al desktop). Windows può essere usato anche in modalità tablet ma questa soluzione per i nostri scopi è molto scomoda; meglio usare il classico ambiente che abbiamo a disposizione su ogni computer.

 

A confronto:

  • Eagle: è un sistema completo e modulare, che si monta direttamente sul nostro telescopio, ottimizzando trasportabilità, funzionalità e possibilità di automazione
  • Tablet: può gestire solamente ed in modo “basilare” le funzionalità di acquisizione e autoguida, inoltre non si può montare sul nostro telescopio in modo solidale.
  • Varius: essendo un bridge avanzato di alimentazione con hub usb integrato, esce solo un cavo verso il nostro PC/Tablet (il Tablet può essere anche quello proposto, per dire). Il Varius ha una basetta per poterlo installare sul nostro strumento, ma poi va rimosso, non essendo solidale come Eagle.

 

L’ alimentazione

La batteria del tablet dura poco, circa 3 ore se si utilizza in modo normale e per di più non ci sono porte usb per collegare la nostra strumentazione. Come facciamo? C’è una soluzione rapida, leggera ed economica.

Per l’alimentazione possiamo comprare un economico power bank. Il tablet in autoguida e con schermo spento consuma circa 0,7 Ampere. Un power bank da 5 Volt (il tablet va a 5 Volt) e 13-15 Ampere costa una ventina di euro (https://www.amazon.it/EasyAcc-Brilliant-Caricatore-15000%C2%A0mAh-Smartphone/dp/B00M8UFTQA/ref=sr_1_2?s=electronics&ie=UTF8&qid=1474975624&sr=1-2&keywords=power+bank+15000) e consente di avere l’alimentazione per circa 18 ore, a cui aggiungere le tre ore della batteria del tablet, per un totale di almeno 20 ore, a essere piuttosto conservativi: in pratica ci possiamo fare tranquillamente due notti senza ricaricarlo. Ovviamente questo calcolo si applica solamente alla batteria del tablet, se ci colleghiamo altri device (montatura, etc) la durata si ridurrà.

A confronto:

  • Eagle: avendo un bridge di alimentazione integrato, alimenta dalla montatura alla camera ccd raffreddata, basta collegarlo ad una fonte di alimentazione adeguata. Tutti i cavi di alimentazione dei nostri device partono da Eagle. Può fornire una potenza di alimentazione di 3A e 5A a seconda della porta utilizzata.
  • Tablet: non prevede nativamente di alimentare il nostro setup, quindi dobbiamo prevedere di creare un sistema per alimentare i device che però non richiedono un’assorbimento di oltre 500mAh, dato che saranno collegati all’hub usb esterno, mentre se richiedono alimentazione superiore (camere ccd raffreddate, montatura, etc) dovremo prevedere di aggiungere un altro sistema di alimentazione.
  • Varius: basta collegare il cavo fornito ad una batteria da auto con un Amperaggio adeguato (consiglio minimo 50Ah per una nottata fredda di astrofotografia) e collegare tutti i device al Varius, che li alimenterà oltre a collegarli al nostro PC/Tablet.

 

Porte USB e collegamenti

Come facciamo invece per le porte usb? E magari tenere il tablet collegato al power bank contemporaneamente? C’è un piccolo trucco. Dobbiamo comprare, per pochi euro un cavo OTG a Y, come questo: https://www.amazon.it/gp/product/B00M1H5348/ref=oh_aui_detailpage_o01_s00?ie=UTF8&psc=1 (io ho esattamente questo modello).

Agganciato alla presa micro usb del tablet, permette di collegare delle periferiche e di alimentare sia queste che il tablet. Il cavo funziona solo se alimentato da una fonte esterna: dal tablet non esce corrente come nei normali cavi OTG (ma vi può entrare). La fonte esterna sarà il nostro power bank. All’unica porta USB di questo cavo possiamo collegare un piccolo hub a 4 o 6 porte e il gioco è fatto. L’hub riceve infatti l’alimentazione dal power bank, che alimenterà tutte le periferiche che ci collegheremo, compresa una camera di guida e potremo quindi usare la nostra configurazione come se fosse un normale computer. Il consiglio è quello di acquistare anche mouse e tastiera wireless: per circa 20 euro avremo un piccolo ricevitore da collegare a una delle porte USB, che ci permetterà di usare mouse e tastiera al posto del touch, che è pure piuttosto impreciso (per 40 euro non si può pretendere di più). L’uso di mouse e tastiera wireless, oltre a eliminare due cavi, consente di occupare solo una delle porte usb del nostro hub e quindi di avere a disposizione una maggiore potenza di fuoco per collegarci quello che vogliamo.

A questo punto il nostro setup è pronto: il tablet funziona esattamente come un normale computer, quindi non c’è molto altro da aggiungere. Possiamo collegare le periferiche che vogliamo e installare driver e programmi, scaricandoli da internet o, meglio, importandoli da una chiavetta USB (così teniamo il tablet sempre scollegato dalla rete per impedire installazione di aggiornamenti e/o rallentamenti vari: non vorremo mica che si blocchi installando degli aggiornamenti durante la serata con il cielo migliore della nostra vita, vero!?). Tenete conto che se collegate device che richiedono ulteriore alimentazione rispetto a quella fornita dalle porte USB, dovrete collegarci una fonte di alimentazione supplementare.

Ecco la configurazione con porte USB e alimentata da un power bank da 26 Ampere pronta per la serata di fotografia astronomica. Autonomia stimata: 40 ore

Ecco la configurazione con porte USB e alimentata da un power bank da 26 Ampere pronta per la serata di fotografia astronomica. Autonomia stimata: 40 ore

 

Risultati

Ho provato il WinPad W700 con diverse configurazioni e sottoponendolo anche a qualche stress. Ho installato senza problemi i driver delle camere CCD che utilizzo, una ST-7XME e un ST-2000XCM della SBIG e quelli di una camera planetaria che ho utilizzato come autoguida attraverso PHD. Ho fatto girare la versione 5 di MaxIm DL, che gestisce sia la fase di ripresa che di autoguida, senza particolari problemi, oltre a PHD. Anche i driver ascom funzionano, così come programmi quali Cartes du Ciel. Non ho provato Stellarium perché è troppo pesante e in generale non consiglio di installarci software per il fotoritocco come Photoshop e PixInsight: questo tablet infatti va bene solo per gestire l’autoguida e al limite la fase di ripresa, mentre Eagle permette di eseguire qualsiasi tipo di operazione, essendo un computer vero e proprio.

Non ho provato a utilizzarlo per l’imaging planetario ma posso affermare senza problemi che NON è indicato, sia per la poca RAM che per l’esiguo spazio di archiviazione. In ogni caso consiglio di acquistare una micro SD da 32GB, che si trova a una decina di euro, per avere così spazio a sufficienza per accumulare molti dati durante le serate di ripresa del profondo cielo.

Uno screenshot direttamente dal Winpad W700 di MaxIm DL durante l'acquisizione e la guida sul finire di una serata di fotografica.

Uno screenshot direttamente dal Winpad W700 di MaxIm DL durante l’acquisizione e la guida sul finire di una serata di fotografica.

In commercio ci sono tablet più performanti, naturalmente, ma ho voluto testare la soluzione più economica per capire quali fossero le sue potenzialità. Per chi usa una reflex digitale rappresenta un’alternativa molto economica e migliore rispetto alle camere autoguida standalone (che devono essere alimentate comunque!) e gestire quindi la sola fase di guida. In generale anche per gli astrofotografi itineranti che desiderano togliere peso e cavi dalla loro macchina è una valida alternativa per gestire anche la fase di acquisizione. Ovviamente dovremo vedere dove e come appendere i vari cavi, power bank, tablet, dove posizionare la tastiera, etc.

A confronto:

  • Eagle: ovviamente è molto più performante di un economico tablet e consente di svolgere tutte le operazioni desiderate, oltre a fornire la flessibilità di utilizzo grazie al bridge di alimentazione integrato. Non ha problemi per eseguire qualsiasi software, così come per elaborare e acquisire filmati planetari con camere dotate anche di porta USB 3.0.
  • Tablet: ideale se abbiamo un setup molto leggero anche in termini di assorbimento della corrente, infatti le ccd raffreddate andrebbero comunque alimentate a parte, così come anche la montatura va alimentata a parte. In sostanza dovremo prevedere di alimentare ogni device in modo autonomo tranne quelli puramente USB. Questo porta a preferire il tablet se si riprende con una reflex non raffreddata, gestendo solamente l’autoguida e al massimo le riprese tramite un programma di terze parti.
  • Varius: può gestire tranquillamente, come alimentazione, montatura, camere raffreddate, fasce anticondensa. E’ stato pensato per le sessioni deepsky, mentre l’uso con camere planetarie sarà limitato dalla presenza di un hub usb 2.0 e dalla lunghezza del cavo derivante, oltre al limite fisico del la nostra macchina di ripresa. I software da eseguire dipendono dalla potenza del nostro PC/Tablet

 

Bonus: controllare il tablet in remoto

Queste poche righe in realtà sono generiche e consentono di visualizzare il desktop del computer/tablet che sta facendo le riprese da qualsiasi dispositivo, anche uno smartphone. Ci sono diversi metodi, ma il mio preferito è il seguente. Quello che serve è una rete locale che può essere creata con un piccolo router wifi da collegare a una presa USB (non serve internet!) e il programma VNC. Sul computer/tablet si installerà il software gratuito chiamato tight VNC, mentre sullo smartphone un’applicazione gratuita chiamata VNC Viewer. Si collegano entrambi i dispositivi alla rete locale, sul computer che controlla la sessione di ripresa si avvia Tight VNC e ci si annota l’indirizzo IP che gli è stato assegnato (Nella finestra di ricerca digitare cmd e premere invio; poi dal prompt dei comandi che si apre digitare Ipconfig, premere invio e leggere la voce IPv4 Adress); questo indirizzo deve essere immesso nell’applicazione VNC Viewer quando si deve configurare il computer a cui vorremmo connetterci. Il WinPad W700 si controlla in remoto che è un piacere e non ha mai mostrato rallentamenti.

A confronto:

  • Eagle: genera di automatico una rete WiFi e basterà connettersi con il device che vogliamo usare per controllarlo. Il tempo di latenza è inferiore rispetto al VNC, perchè usa un sistema differente.
  • Tablet: dobbiamo creare noi la nostra rete VNC, operazione consigliata a chi ha almeno un po’ di esperienza informatica. Sicuramente per i meno esperti si può usare TeamViewer come alternativa al VNC.
  • Varius: stesso discorso del Tablet, possiamo scegliere se affidarci ad un cavo sub 2.0 con lunghezza max 3mt circa, oppure creare anche qui una rete per il controllo in remoto.

 

Il Tablet è il Sacro Graal per la fotografia astronomica? Non proprio

La soluzione proposta qui comporta una spesa minima ma ha naturalmente delle limitazioni. Il tablet ha una risoluzione dello schermo di soli 1024X600 pixel e con appena 7 pollici di diagonale richiede una buona vista. L’hardware funziona e sembra stabile, ma nulla si sa sulla sua durata nel tempo. Il touch screen su uno schermo così piccolo non è comodo da usare, tanto che è indispensabile una tastiera e un mouse esterni. I collegamenti sono affidabili ma richiedono un minimo di manualità ed è necessario seguire le indicazioni per l’assemblaggio e l’ottimizzazione del setup proposte nel post. Insomma, si tratta di una soluzione che funziona certamente ma che non si può sostituire a oggetti di maggiore potenza, eleganza e affidabilità, come il sistema Eagle di PrimaLuceLab, che è molto più potente, versatile e pronto all’uso e ha materiali di ben altra fattura rispetto alla plastica e allo schermo minuscono di un tablet economico. La soluzione di Eagle, per chi fa della fotografia itinerante il suo stile di vita, possiede camere CCD con grossi sensori e magari vuole controllare focheggiatori elettrici, plate solving e in generale una complessa sessione di fotografia astronomica è sicuramente da preferire a un tablet dalla limitata potenza di calcolo e di memoria che non ce la farebbe proprio se si carica oltre la gestione della guida e della semplice acquisizione delle immagini.

E’ anche vero che il Varius della Geoptik è una buona soluzione per avere tutti i nostri device alimentati, collegati e con solo 1 cavo che va verso il nostro PC/Tablet.

D’altra parte si tratta di due soluzioni molto diverse; sarebbe come confrontare una vecchia reflex Canon 350D che si trova usata a meno di 200 euro con una nuovissima full frame Canon 7D Mark II: entrambe sono in grado di produrre dei risultati, ma la 7D possiede una potenza inarrivabile per la vetusta 350D e con la seria possibilità che questa potrà durare per ben più a lungo della configurazione più economica. Il Varius si colloca a metà tra i 2, come prezzo, funzionalità e possibilità.

A confronto:

  • Eagle: in un unico oggetto racchiude un vero e proprio pc, un bridge di alimentazione per tutti i nostri device e la possibilità di montarlo sul nostro setup, senza poi smontarlo ad ogni utilizzo. E’ in grado di fare tutto, dal deepsky alle riprese planetarie, specie nella versione Observatory. Inoltre è tutto integrato a livello software.
  • Tablet: ha dalla sua l’economicità e la compattezza, ideale per operazioni di base come autoguida e gestire l’acquisizione, ma per alimentare i nostri device (tranne quelli USB) dobbiamo pensare ad altre fonti di alimentazione. Va bene per gestire sessioni “semplici” sul deepsky, mentre per le riprese planetarie il framerate della camera si abbasserà moltissimo per via dell’hardware economico.
  • Varius: essendo solamente un bridge di alimentazione con hub usb 2.0 integrato, richiede sempre e comunque di essere collegato al nostro PC/Tablet. Offre molte possibilità di alimentazione, in pratica può alimentare qualsiasi cosa vogliamo connetterci. Rispetto al tablet, se ci colleghiamo un PC performante, possiamo eseguire tutte le operazioni che vogliamo, con limitazioni per l’uso con camere planetarie in fase di acquisizione. Si può montare e rimuovere dal nostro setup con la basetta fornita di serie.

 

 

linearity_moravian_g2-8300

Testiamo la linearità del nostro sensore digitale

Uno dei grandi vantaggi dei sensori digitali è la cosiddetta linearità, o risposta lineare. Di cosa si tratta? In pratica un sensore produce un’immagine la cui intensità è direttamente proporzionale alla luminosità dell’oggetto o al tempo di esposizione. Se ad esempio facciamo una foto di una stella non variabile, questo implica che se si raddoppia l’esposizione raddoppierà il segnale (la luminosità) che il sensore avrà registrato dalla stella. Detto in questi termini sembra la scoperta dell’acqua calda e si fatica persino a capirne l’utilità; anzi, gli astrofotografi più esperti neanche lo vedono come un vantaggio e vedremo presto il perché.

Che i sensori abbiano una risposta lineare all’intensità luminosa che li colpisce non è una cosa scontata. L’altro strumento che usiamo per osservare il mondo, l’occhio, NON possiede una risposta di questo tipo, ma logaritmica: in pratica l’intensità percepita da tutti gli occhi umani cresce con il logaritmo dell’intensità luminosa che lo colpisce. In questo modo, quindi, quando vediamo una sorgente che ci appare il doppio più luminosa di un’altra, la reale differenza di luminosità non è di due volte ma molto più alta. Il caso classico è rappresentato dalla scala delle magnitudini, in cui tra una stella di magnitudine 2 e una di magnitudine 4 non c’è una differenza di 2 volte come suggerisce l’occhio ma di ben oltre 6 volte. Questa curva di risposta meno ripida di una retta consente al nostro occhio di sopportare enormi differenze di luminosità senza avere particolari problemi perché di fatto schiaccia le reali differenze di luminosità e ce le fa percepire come se fossero molto più ridotte di quanto siano. Di fatto, per chi conosce un po’ il gergo della fotografia astronomica, l’occhio umano opera uno stretch logaritmico automatico su ogni immagine che registra.

Perché allora i sensori digitali possiedono una risposta lineare, così differente da quella dell’occhio umano? E perché questa sembra così importante tanto da dedicarle un post? La risposta è semplice: la linearità nella risposta è fondamentale se si vogliono effettuare precise stime di luminosità degli astri. L’introduzione dei sensori digitali nell’astronomia (professionale) ha prodotto una grande rivoluzione che ha consentito di arrivare persino a scoprire la debolissima traccia lasciata da un pianeta extrasolare in transito di fronte al disco luminoso della propria stella.

In ambito prettamente astrofotografico questo che è un enorme vantaggio viene ribaltato e si trasforma in uno svantaggio: gran parte dell’elaborazione di una foto estetica si basa infatti sui cosiddetti stretch, ovvero sull’alterare la risposta portandola da lineare a logaritmica. Questa operazione consente di osservare sullo schermo del computer sia dettagli molto deboli che molto brillanti. Se si fosse avuto un sensore già con una risposta logaritmica come il nostro occhio sarebbe stato quindi più facile ottenere fotografie estetiche, in un certo senso!

In realtà la risposta lineare del sensore serve anche per chi fa fotografia estetica e permette di correggere i principali difetti delle immagini attraverso i dark frame e i flat field. Quest’ultimi sono importantissimi nel poter disporre di un’immagine da elaborare priva di difetti macroscopici e dalla quale potremo discernere molto bene dettagli reali da artefatti dovuti a polvere sul sensore o alla vignettatura del telescopio. Se il sensore non ha risposta lineare per certi livelli di luminosità, i flat field potrebbero non correggere le immagini e il risultato potrebbe essere disastroso.

Chi si dedica alla ricerca, anche in ambito amatoriale, soprattutto fotometrica, ha l’assoluta necessità di sapere se e quanto è lineare la risposta del proprio sensore, altrimenti rischia di misurare magnitudini del tutto sballate rispetto ai dati reali. Ecco allora che ho trasformato un argomento che poco interessava in uno dei mille problemi aggiuntivi che si trovano ad affrontare tutti coloro che usano camere digitali: i sensori hanno una risposta lineare? Se sì, per tutto l’intervallo di luminosità consentito? Come possiamo capire come si comporta il nostro sensore?

Come al solito parto con le notizie brutte: non è scontato che la risposta del sensore sia lineare su tutto l’intervallo di luminosità che riesce a darci, anzi, i sensori delle reflex e in generale tutti quelli dotati di un meccanismo chiamato porta antiblooming (ABG) hanno un ristretto intervallo di linearità. Questo si traduce nell’impossibilità di fare misure fotometriche e spesso anche nella difficoltà quasi estrema di ottenere flat field che correggano bene le immagini estetiche. Quindi, se avete fatto del flat field e avete notato che “non flattano” la risposta potrebbe essere questa: non li avete fatti nell’intervallo di linearità del sensore, che potrebbe essere molto limitato.

La prossima domanda allora è scontata: come misuro l’intervallo di linearità del sensore? Come faccio a capire quando smette di comportarsi bene e inizia a fornire valori sballati di luminosità?

È qui che arriva la bella notizia, perché possiamo fare un test rapido e molto semplice, di giorno e stando comodi dentro casa. Di modi per fare questo test ce ne sono diversi, qui spiego quello più facile, rapido e chiaro. L’idea alla base è chiara: disporre di una fonte di luce fissa e fare una serie di scatti con tempo crescente, in modo da coprire tutta (o quasi) la gamma di luminosità concessa dall’elettronica del sensore. Poi misureremo la luminosità della sorgente in funzione del tempo di esposizione e costruiremo un bel grafico. Se la risposta è lineare, i punti si disporranno su una retta, altrimenti inizieranno a fare strane curve e potremo così individuare l’intervallo di luminosità in cui potremo effettuare i nostri flat field o misurare la luminosità delle stelle senza problemi.

Ora che abbiamo capito l’idea alla base, cerchiamo di metterla in pratica. Intanto la fonte di luce: ideale è una lampada a led, anche una torcia. Se abbiamo una flatbox le cose saranno ancora più semplici. Non è necessario montare la camera su un telescopio ma è sicuramente più comodo. Se non abbiamo grossi problemi, possiamo montare il telescopio in casa e metterci sopra la flat box. L’idea è quella di ottenere dei flat field con diversi tempi di esposizione, idealmente da 1 a 20-30 o più secondi, in modo che la luminosità media dell’esposizione più breve sia attorno a 1000-1500 ADU e quella dell’esposizione più lunga raggiunga la saturazione, circa a 65000 ADU se usiamo camere da 16 bit. In questi casi visualizzare l’istogramma ci sarà molto utile. Se la luminosità della flatbox è troppo forte possiamo inserire un filtro nella nostra fotocamera (tanto la linearità non dipende dalla lunghezza d’onda) o schermare la luce della flatbox con qualche foglio bianco.

A questo punto, in binning 1 (cioè a piena risoluzione) e con il sensore raffreddato (per chi se lo può permettere) effettuiamo degli scatti a esposizioni crescenti, partendo da 1 secondo fino ad arrivare alla saturazione, incrementando di un secondo ogni volta. Ripetiamo questa procedura 3 volte per avere una buona statistica (in pratica alla fine costruiremo 3 grafici indipendenti e vedremo i risultati) che ci permetterà di escludere eventuali variazioni della sorgente di luce. In alternativa possiamo mediare 5-6 singoli scatti per ogni intervallo di esposizione (ognuno dei quali calibrato con dark o con bias), come ho fatto nei risultati che troverete alla fine di questo post. Se abbiamo tempo e un CCD raffreddato, sarebbe meglio catturare circa 3-5 dark frame per ogni esposizione. Naturalmente non servono flat field perché stiamo analizzando di fatto dei flat field. Se abbiamo sensori non raffreddati non facciamo i dark ma i bias: una ventina di scatti con camera al buio e il più breve tempo di posa concesso dall’elettronica.

In fase di elaborazione non dovremo far nulla se non calibrare le nostre esposizioni. Attenzione in questo punto: i bias frame vanno bene per tutti gli scatti, mentre i dark frame sono collegati a ogni esposizione, quindi NON usiamo dark da 5 secondi per correggere le immagini da 2 secondi. So che alcuni software applicano un dark frame adattivo, ma non dobbiamo neanche pensarci!

Con le immagini calibrate adesso passiamo alla fase più noiosa: dobbiamo scegliere un’area di circa 50X50 pixel, sempre la stessa per ogni scatto e illuminata in modo circa uniforme, e annotarci il valore medio di luminosità, espresso in ADU.

In alternativa, se non ci sono forti variazioni di luminosità nell’intero campo, potremo usare tutta l’immagine come area di misurazione. Questo ci evita di dover tracciare un riquadro su ogni esposizione ma la precisione ne risentirà. Se i nostri speciali flat field possiedono variazioni di luminosità superiori al 10% nelle varie zone dell’immagine, siamo costretti a scegliere una piccola area verso il centro e con un’illuminazione più uniforme. La richiesta di luminosità uniforme lungo l’area di cui vogliamo misurare l’intensità luminosa è fondamentale per evitare che la misura venga falsata da porzioni che si trovano già oltre il range di linearità rispetto ad altre.

I programmi per fare questa misura sono quelli tipicamente astronomici, come AstroArt e MaxIm DL. Con MaxIm DL basta aprire l’immagine calibrata che si vuole misurare, visualizzare la finestra “Information Window” (View –> Information Window), e poi da questa scegliere la modalità “Area”. Di default compariranno le informazioni relative a tutta l’immagine, compresa quella che a noi maggiormente interessa: il valore medio della luminosità (Average), espresso in ADU. Se vogliamo o dobbiamo restringere l’area di misurazione, si deve tracciare un rettangolo sull’immagine con il mouse, ciccando con il tasto sinistro, tenendo premuto e trascinando il rettangolo che si formerà. In questo caso è assolutamente necessario annotarsi la posizione e le dimensioni della finestra di misurazione perché dovrà essere identica per ogni immagine che vorremo misurare, nella medesima posizione. Una volta tracciata l’area, la finestra “Information Window” ci darà le sue coordinate (quindi potremo ridisegnarla uguale senza problemi anche sulle altre esposizioni) e naturalmente i valori di luminosità media.

Area di misurazione della luminosità media con MaxIm DL e rispettiva "Information Window".

Area di misurazione della luminosità media con MaxIm DL e rispettiva “Information Window” in cui possiamo trovare la sua posizione e la luminosità media (Average).

 

Analizziamo le immagini

Bene, per ognuna delle immagini calibrate con dark frame o bias frame annotiamoci il relativo tempo di esposizione e il valore medio di luminosità. Importiamo i dati in un foglio di calcolo e cominciamo con le nostre analisi.

Come programma possiamo usare Excel o il gratuito Gnumeric, che funziona sia per Windows che per Linux. In ogni caso le operazioni da fare sono poche e semplici: si tratta infatti di costruire qualche grafico e magari fare una regressione lineare sui dati. Niente paura, spiego tutto nei prossimi punti.

  • Il primo grafico che dobbiamo fare mette in correlazione il tempo di esposizione e il valore medio di ADU misurato per ogni immagine. Sull’asse x va quindi il tempo di esposizione dei nostri speciali flat field, sull’asse y i valori medi di ADU. Da questo grafico, se abbiamo fatto tutte le misure per bene, dovremo trovare dei punti che si dispongono su una retta perfetta: caspita, il sensore è perfettamente lineare allora! No, non necessariamente. Questo è il primo grafico e serve per vedere se ci sono stati errori macroscopici nella fase di acquisizione ed estrapolazione dei dati (o se il sensore fa proprio schifo!). Con il grande intervallo di luminosità sull’asse y è impossibile vedere piccole deviazioni dal comportamento lineare. Quando la situazione può ingannare l’occhio (cioè quasi sempre), ecco che subentra una cosa che gli uomini hanno inventato tanto tempo fa e che i più, ahimé, disprezzano: si chiama scienza, in questo caso un po’ di statistica. La domanda a cui vogliamo rispondere è la seguente: il grafico ci sembra perfetto perché è così o perché siano stati ingannati? La risposta l’ho già data implicitamente qualche riga sopra, meglio quindi procedere spediti per vedere che avevo ragione;
Di primo acchitto il grafico sembra molto bello, ma l'occhio inganna...

Di primo acchitto il grafico sembra molto bello, ma l’occhio inganna…

 

  • A dominare il grafico non sono le probabili piccole deviazioni dal comportamento lineare ma il fatto che la luminosità cambia di migliaia di ADU lungo l’asse Y. Per togliere questo comportamento e mettere a nudo le più piccole imperfezioni del nostro sensore, dobbiamo fare quella che viene chiamata regressione lineare o fit lineare e analizzare i residui. In pratica diciamo al software di “unire” i punti con la migliore retta che è possibile costruire, poi sottrarremo i valori della retta ai punti reali e analizzeremo quelli che vengono chiamati residui, ovvero i punti depurati dell’andamento principale che ci impediva di vedere nel dettaglio il loro comportamento. Se i punti sono davvero tutti sulla retta come sembra dal primo grafico, i loro residui saranno tutti nulli o disposti in modo casuale attorno allo zero, e noi saremo contentissimi perché avremo in tasca il sensore digitale più preciso dell’Universo intero. Tranquilli, non c’è pericolo di cadere in questa eventualità…
    Sembra tutto complicato ma non lo è. Ci sono diversi modi per fare un fit lineare e poi sottrarne i valori ai dati. Con il programma Gnumeric, ad esempio, un modo molto rapido e user friendly è farlo fare in modo grafico al programma. Nelle opzioni di costruzione del grafico (che si attivano quando vogliamo costruire un nuovo grafico o quando facciamo doppio click su uno già creato), se ci posizioniamo sulla serie di dati immessi e clicchiamo sul punsalte “Aggiungi” potremo scegliere una bella “Trend line to serie 1”, in particolare del tipo “Lineare”. Nel nuovo menù che si apre basta accertarsi che l’opzione “Affine” sia selezionata e già potremo vedere una bella retta sovrapposta ai nostri dati.
In gnumeric, in pratica un clone gratis di Excel, possiamo fare tutti i calcoli che vogliamo. In questo caso ci serve un fit lineare e poi magari di visualizzare l'equazione della retta.

In gnumeric, in pratica un clone gratis di Excel, possiamo fare tutti i calcoli che vogliamo. In questo caso ci serve un fit lineare e poi magari di visualizzare l’equazione della retta.

 

  • Non abbiamo ancora finito, però. Clicchiamo ancora su “Aggiungi” e selezioniamo “Equazione to Regressione lineare 1”. Confermiamo tutto e vedremo comparire nel grafico sia la retta di fitting che l’equazione che la descrive. A questo punto dobbiamo creare una nuova colonna nel nostro foglio di lavoro, alla quale applichiamo l’equazione a ogni tempo di esposizione. In questo modo invece di una retta troveremo dei punti che si sovrappongono a essa in modo perfetto. Non c’è bisogno di graficarli; questi ci servono per fare la successiva operazione: creare i residui. I punti appena ottenuti sono quelli che si avrebbero in una situazione ideale in cui la risposta è rappresentata da un’unica e perfetta retta. I nostri punti sperimentali, invece, non avranno questa bella proprietà. Per capire quanto se ne discostano basta creare una nuova colonna in cui calcoliamo la differenza Osservato – Calcolato per ogni tempo di esposizione.

dati_better

  • Proviamo ora a costruire un grafico di questi residui in funzione del tempo di esposizione o, meglio, del valore medio di ADU corrispondente e vedremo che quella che prima era una retta perfetta ora in realtà è molto diversa.
Ora le cose sono più chiare e i dati non sono poi così ben disposti su una retta, che in questo caso dovrebbe essere parallela all'asse x!

Ora le cose sono più chiare e i dati non sono poi così ben disposti su una retta, che in questo caso dovrebbe essere parallela all’asse x!

 

Questo è il grafico davvero importante, perché ci dice come cambia il comportamento del nostro sensore in funzione della luminosità. Nella migliore delle ipotesi vedremo un intervallo lungo fino ad almeno 30 mila ADU in cui i punti si trovano su una retta quasi perfetta e poi divergono. Questo è il caso classico delle camere CCD scientifiche, tipicamente monocromatiche e prive della porta antiblooming.

Nella peggiore delle ipotesi, ovvero nel caso di camere CCD o reflex dedicate all’imaging estetico, le cose saranno ben peggiori, con diversi andamenti di “linearità” prima della saturazione. In questi casi diventa impossibile fare fotometria di alta precisione e spesso è complicato anche fare corretti flat field per riprese con soggetti deboli.

 

Due esempi reali

Ho effettuato il test di linearità appena esposto per due sensori CCD. Il primo, un Kak-402 con microlenti che equipaggia una SBIG ST-7XME, è il tipico sensore scientifico: monocromatico e senza antiblooming. Il secondo, un Kaf-8300 che equipaggia molte camere CCD, in questo caso una Moravian G2-8300 monocromatica, dotato di porta antiblooming, quindi più adatto all’imaging estetico.

I risultati evidenziano molte differenze. Se a prima vista i grafici della luminosità media in funzione del tempo di esposizione sono identici, o addirittura sembrano migliori nella Moravian (ma solo perché non si è raggiunta la saturazione, cosa che è avvenuta con la SBIG):

 

Test di linearità per due sensori CCD. Questi i grafici degli ADU medi in funzione del tempo di esposizione. Ci dicono poco e potrebbero ingannare.

Test di linearità per due sensori CCD. Questi i grafici degli ADU medi in funzione del tempo di esposizione. Ci dicono poco e potrebbero ingannare.

 

 Il fitting lineare con conseguente analisi dei residui rivela la reale situazione:

 Analisi dei residui: ora è fin troppo evidente quale sia il sensore migliore quanto a risposta lineare. Il Kaf 8300 presenta delle vere e proprie montagne russe!

Analisi dei residui: ora è fin troppo evidente quale sia il sensore migliore quanto a risposta lineare. Il Kaf 8300 presenta delle vere e proprie montagne russe!

 

Come si può vedere, la SBIG, a partire da circa 2000 ADU e fino a 25000 presenta una linearità che sfiora la perfezione, con un comportamento da manuale. Gli scostamenti dalla retta ideale sono dell’ordine dello 0,01%, ovvero di una parte su 10 mila. Questo consente ad esempio di mettere in evidenza senza problemi differenze di magnitudine dell’ordine del millesimo e rivelare quindi anche pianeti extrasolari in transito. Oltre i 30 mila ADU il comportamento comincia lentamente a divergere dalla linearità, sebbene bisogna superare i 40 mila per avere una non linearità dell’ordine dell’1%.

D’altra parte il grafico dei residui del Kaf-8300 è molto meno regolare. Si possono vedere almeno tre zone indipendenti, ognuna approssimabile con una retta di diverso coefficiente angolare: la prima fino a 9 mila ADU, la seconda da 10 mila a circa 18 mila e la terza da 20 mila a 30 mila, prima della naturale deviazione asintotica verso i valori di saturazione.  Questo è un problema se si vuole fare fotometria di alta precisione, in pratica impossibile, ma anche per i flat field. Quale valore usare per fare corretti flat field? La risposta forse già l’abbiamo vista da qualche altra parte, ma ora ne abbiamo la prova: per correggere un fondo cielo che tipicamente ha valori di poche migliaia di ADU, occorre che il flat field sia fatto nel primo intervallo di linearità, ovvero quello fino a 9000 ADU. In pratica, un buon flat field per un sensore di questo tipo è la media di tanti singoli flat che hanno come luminosità di picco circa 8000, massimo 9000 ADU. Per la ST-7XME invece, e in generale per tutte le camere sprovviste di porta antiblooming, i flat field si possono fare attorno a 25 mila ADU, in modo da avere il maggior rapporto segnale/rumore pur rimanendo ancora entro la zona perfettamente lineare.

 

Il test può essere fatto anche con le reflex senza problemi: basta scattare in formato raw agli ISO che di solito si usano per fare riprese astronomiche. In questo caso sarebbe interessante capire se e quanto varia la linearità della risposta in funzione degli ISO e in generale come si comportano questi sensori. Basta provare!