IC1396

Test TS APO 71 Q

Un nostro affezionato cliente, Mauro Maggioni, ha fatto un bellissimo test sul TSAPO71Q in combinata con lo Star Adventurer e ci ha permesso di riprodurlo sul nostro blog: GRAZIE MAURO!!!!

Visitate anche il suo bellissimo sito web: http://www.skattodinamico.altervista.org/index.html
Ecco la sua prova:

 SKY ADVENTURER & TS71Q
… accoppiata perfetta …

… la malattia della “strumentite”, che affligge molti astrofili, mi porta spesso a “saltellare”  tra i vari siti di shopping on-line per cercare qualche novità …

questa volta la mia attenzione cade su uno strumento piccolo, portatile e dalle caratteristiche ottiche davvero raffinate, che sulla carta si presenta come uno strumento da favola. Una combinazione di 5 lenti per un campo spianato sul formato Full Frame … WOW: il TS71Q 🙂

Per dettagli tecnici fate riferimento al sito TS ITALIA: http://www.teleskop-express.it/apocromatici-ota/1598-ts-apo-71q-ts-optics.html

Provo a contattare l’Oracolo di Delfi (che nel mondo dell’astrofilia moderna risponde al nome di Lorenzo Comolli) e anche lui apprezza le notevoli caratteristiche dello strumento, ma, non avendolo mai testato, mi dice che l’unica è metterlo alla ‘frusta’ sul campo.

Ci penso per qualche mese e intanto faccio un po’ di cassa vendendo un po’ di strumentazione (eh già, a volte la “strumentite” mi porta a prendere oggetti che poi finisco con l’usare pochissimo …)

Contatto quindi Riccardo Cappellaro della TE Italia che, con notevole cortesia e competenza, soddisfa la mia richiesta di avere qualche immagine raw fatta con il telescopio in modo da poterla analizzare.

Le immagini sono davvero interessanti e decido di passare all’acquisto.

Nel frattempo avevo acquistato anche un modello di Star Adventurer con lo scopo di realizzare qualche time-lapses.

Per caso una sera, giocando con gli strumenti, provo a montare il TS71Q sullo Star Adventurer e mi rendo conto che lo strumento viene retto egregiamente. La fantasia continua a dilagare e inizio a ipotizzare l’uso dello Star Adventurer per fare pose a largo campo; con una focale di poco più di 350mm e la sony A7s potrei spingermi a pose di un paio di minuti. Oltretutto la presenza della porta di autoguida mi convince che la cosa sia fattibile.

Mi serve però un cavalletto più stabile di quello da “fotografia” diurna e mi dedico per qualche tempo al tuning di un cavalletto SW aggiungendogli una colonna in carbonio (leggera e robusta).

Ultimata la colonna monto tutta la configurazione e, come telescopio guida, riciclo un obiettivo da 400mm F5,6, molto leggero, installato su una testa micrometrica.

Ed ecco il risultato: setup pratico, leggero e dalle notevoli potenzialità … non mi resta che testare il tutto.

Quale migliore occasione del cielo di Tatti, presso Villa Tatti, nella Maremma toscana, in provincia di Grosseto…



La nottata è splendida e dopo uno stazionamento abbastanza preciso inizio la sessione di autoguida …

Fantastico! In assenza di vento la guida in AR resta all’interno del +/-1 e la deriva in DEC mi permette pose da 2 minuti senza problemi. Qualche folata evidenzia la sensibilità dello strumento con picchi che salgono anche a +/-2, ma lo Star Adventurer corregge correttamente e le pose non subiscono errori.

La guida è stata eseguita con una MZ5 e PHD.

Ora si passa all’analisi dell’immagine ripresa dal TS71Q. Attendo i 2 minuti di esposizione sulla IC1396 e  resto davvero soddisfatto: immagine pulita con stelle puntiformi fino ai bordi. Ho confrontato l’immagine con il TAKA FS102, non è allo stesso livello come incisione (non ne dubitavo…il Taka FS102 non ha rivali), ma lo strumento mi soddisfa.

porzione del fotogramma in alto a SX

Il flat è necessario in quanto ai bordi si nota una leggera vignettatura

La serata continua in compagnia di qualche cinghiale ( che fa capolino tra i boschi intorno a Villa Tatti) e dopo una integrazione di circa 2 ore il risultato è il seguente:

IC1396 realizzata con TS71Q – SKY ADVENTURER

pose da 2min per
un’integrazione totale di 2h.

3 dark – 5 flat – 5 darkflat – 9 bias

Sony A7s modificata

Autoguida con obiettivo 400mm e PHD

Quindi se cercate un setup pratico e amate le foto a grande campo non fatevi sfuggire questa coppia di strumenti.

Ho creato anche una versione video con i time lapses ripresi durante il test … buona visione …


https://youtu.be/mDHOTcTH5ZM


Per dettagli tecnici fate riferimento al sito TS ITALIA:

http://www.teleskop-express.it/apocromatici-ota/1598-ts-apo-71q-ts-optics.html

 

Ingrandire molto serve solo per Luna, pianeti e stelle doppie, ma occhio a non esagerare altrimenti si avrà l'effetto simile a quello della precedente fotografia.

La (vera) potenza di un telescopio

“Che bello questo telescopio, quanto ingrandisce?”

È questa la domanda che spesso mi fanno durante le serate pubbliche, ed è la stessa domanda che feci io al mio ottico di fiducia quando dovetti scegliere il mio primo strumento, nel lontano 1993.

Se la domanda è sensata, la risposta è spesso spiazzante, soprattutto nelle sfumature più ironiche, che possono suonare più o meno così: “In teoria anche un milione di volte”, oppure: “Niente, se non ci metti l’oculare”, o ancora: “Infinito!”. Benché ironiche, queste tre risposte raccontano a modo loro i pezzi di una realtà che spesso spiazza chi non conosce ancora il mondo dell’astronomia amatoriale: l’ingrandimento di uno strumento può essere piccolo o grande a piacere, perché dipende dagli oculari che si usano, ma l’immagine che otterremo non sarà sempre nitida e luminosa.

A livello prettamente matematico, l’ingrandimento di uno strumento è dato dal rapporto tra la focale del telescopio, che è fissa, e la focale di un accessorio, che si chiama oculare e che serve per rendere visibile l’immagine all’occhio. Di oculari ce ne sono moltissimi, dalla focale di 2 millimetri a 40 e più millimetri. Inoltre, altri accessori, chiamati lenti di Barlow, possono raddoppiare, triplicare o addirittura quintuplicare gli ingrandimenti, a parità di oculare. Di conseguenza, un telescopio da 1000 mm di focale può lavorare da 10 a 2000 ingrandimenti o più, se inseriamo 2 lenti di Barlow da 5X. “Caspita, a 10 mila ingrandimenti riuscirò a vedere persino la bandiera lasciata dagli astronauti sulla Luna!” No, purtroppo le cose non stanno così. Io, a 10 anni, quando iniziai a fare astronomia non lo sapevo, ma presto mi resi conto di tutto ciò quando comprai un oculare da 4 mm di focale e una lente di Barlow 2X, superando i 400 ingrandimenti con il mio piccolo rifrattore da 90 mm di diametro e vedendo praticamente nulla persino sulla brillante Luna.

L’ingrandimento di ogni telescopio non rappresenta una misura della sua “potenza”, piuttosto è solo il mezzo con cui cerchiamo di sfruttare al massimo le sue prestazioni, che sono fissate dal diametro dell’obiettivo e dalla qualità con cui sono stati lavorati lenti e specchi.

Le quantità fondamentali di uno strumento astronomico sono la capacità di raccolta della luce, che permette di osservare oggetti più deboli di quelli visibili a occhio nudo, e il potere risolutivo, ovvero la capacità di mostrare piccoli dettagli degli oggetti astronomici. Entrambe queste due quantità dipendono prima di tutto da quanto è largo il telescopio, cioè dal diametro delle lenti o dello specchio primario. Questi elementi ottici devono naturalmente essere lavorati in modo preciso, affinché non ne vengano intaccate le prestazioni determinate dalle leggi della fisica. Ecco, allora, perché non è possibile costruire un telescopio con una semplice lente di ingrandimento o con uno specchio da barba che ingrandisce le immagini: la loro lavorazione è di gran lunga insufficiente per fare osservazioni anche solo decenti.

Se la qualità con cui sono lavorati gli elementi è buona, il diametro rappresenta l’unico (o quasi) elemento per valutare la potenza di un telescopio, perché è questo che determina il potere risolutivo e quanta luce posso raccogliere dagli oggetti deboli. Attraverso l’ingrandimento si cercherà di arrivare al limite delle possibilità del telescopio, ma non potremo mai aumentarne le prestazioni oltre quelle determinate dal suo diametro (e qualità ottica).

Se ora inseriamo nel contesto anche gli oggetti astronomici che ci piacerebbe osservare, si capisce anche un’altra cosa che a me, tanto tempo fa, stupì non poco: tranne i pianeti, tutti i più brillanti oggetti del cielo profondo, ovvero ammassi stellari, nebulose e galassie, hanno un’estensione angolare simile, o addirittura superiore, a quella della Luna piena vista a occhio nudo! Il problema, quindi, nella grande maggioranza dei casi non è ingrandire l’oggetto per osservarlo meglio, ma riuscire a trovare un ingrandimento, di solito modesto, tale per cui entra nel campo e allo stesso tempo la sua luce non viene diluita così tanto da risultare quasi invisibile.

Quasi tutti gli oggetti del cielo profondo vengono osservati al meglio tra i 30 e i 150 ingrandimenti, a prescindere dal diametro del telescopio. La loro debolezza intrinseca rende quasi sempre vano ogni tentativo di osservazione in alta risoluzione, cercando dettagli piccolissimi che non potremmo mai vedere.

Solo con l’osservazione di pianeti, Luna e stelle doppie si possono aumentare gli ingrandimenti fino a cercare di sfruttare tutto il potere risolutivo dello strumento. Una regola empirica vuole che, per osservare tutti i minuti dettagli di oggetti brillanti, l’ingrandimento massimo debba essere compreso tra le 2 e le 2,5 volte il diametro del telescopio espresso in millimetri. Ecco allora che un telescopio da 100 mm di diametro può sfruttare con profitto ingrandimenti fino a 200-250 volte e solo su soggetti brillanti che mostrano dettagli ad alto contrasto e luminosità (e nelle serate “buone”!). Questo ingrandimento è sufficiente per sfruttare il potere risolutivo dello strumento. Continuare a ingrandire è possibile ma l’effetto è simile a quello che si ottiene ingrandendo a dismisura una fotografia sul computer.

L’esempio con una fotografia calza molto bene e fa capire alla perfezione la situazione (rima fatta!). Immaginiamo di avere un’immagine con una risoluzione superiore a quella dello schermo; se vogliamo vedere tutto il campo ripreso dobbiamo ridurne le dimensioni: quest’osservazione a basso ingrandimento ci fa percepire meno dettagli piccoli, perché anche se ci sono il nostro occhio non li riesce a vedere. Ingrandendo l’immagine perdiamo la visione d’insieme ma possiamo arrivare a vedere sempre maggiori dettagli. Alle dimensioni originali otteniamo di fatto quello che per un telescopio è il massimo ingrandimento utile: stiamo osservando una piccola porzione dell’immagine ma riusciamo ad ammirare tutti i piccoli dettagli che prima non potevamo percepire (sebbene fossero presenti). Se continuiamo a ingrandire ben oltre le dimensioni originali non otteniamo alcun miglioramento della visione, perché abbiamo già visto tutta la risoluzione catturata dalla foto, che è stata fissata al momento dello scatto e che nessun ingrandimento può alterare.

 

Ingrandire un oggetto è come fare zoom su una fotografia: quando superiamo un certo ingrandimento l'immagine si sfoca e non ci restituisce più dettagli.

Ingrandire un oggetto è come fare zoom su una fotografia: quando superiamo un certo ingrandimento l’immagine si sfoca e non ci restituisce più dettagli.

 

Ingrandire molto serve solo per Luna, pianeti e stelle doppie, ma occhio a non esagerare altrimenti si avrà l'effetto simile a quello della precedente fotografia.

Ingrandire molto serve solo per Luna, pianeti e stelle doppie, ma occhio a non esagerare altrimenti si avrà l’effetto simile a quello della precedente fotografia.

Ecco allora che abbiamo imparato una cosa molto importante, che è fondamentale per fare il primo passo verso l’astronomia amatoriale e capire anche di chi ci si può fidare quando vogliamo dei consigli sull’acquisto di un telescopio. Il mio ottico, tanto tempo fa, quando gli feci quella domanda sugli ingrandimenti mi consigliò un telescopio che poteva arrivare a quasi 600 volte, invece di un altro che non avrebbe superato i 300 ingrandimenti. Entrambi erano rifrattori da 90 mm di diametro, solo che uno aveva una focale di 500 mm e l’altro di un metro. Secondo voi, ora che sapete come stanno le cose, avrei dovuto fidarmi della sua competenza astronomica?

Questa è una porzione dell'immagine grezza che dovrete elaborare.

Provate a elaborare una mia immagine astronomica

Molti astronomi amatoriali, soprattutto nel campo della fotografia astronomica, non rivelano mai, se non in modo parziale e con molta riluttanza, i propri segreti di elaborazione delle immagini, credendo che il sudore versato per imparare alcune efficienti tecniche di elaborazione debba servire per mantenere una posizione di vantaggio sugli altri.
Io, tuttavia, non ho mai sposato questa filosofia anche perché stiamo facendo, volenti o nolenti, scienza, o almeno stiamo analizzando dati reali che devono produrre risultati reali, per di più come un hobby e non come lavoro. Per confermare la realtà di ogni elaborazione serve che, come in ogni processo scientifico, il risultato sia ripetibile da tutti gli altri dopo che questi sono stati cottettamente informati di cosa è stato fatto. La bravura di uno scienziato e anche di un astrofotografo non è nell’ottenere risultati unici e di portarsi il segreto nella tomba, ma di arrivare per primo a tali livelli, di sviluppare metodi, tecniche e percorsi innovativi che permettano di sfruttare ancora meglio la strumentazione e il cielo sotto cui è stata usata. Si verrà allora ricordati non solo per le belle foto ma anche per aver dato un fondamentale contributo alla crescita di una comunità, perché convidivere un viaggio con tanti appassionati è sempre meglio che sovrastare il prossimo con la propria saccenza. Se nessuno avesse mai comunicato le proprie scoperte in fotografia astronomica staremmo ancora inseguendo le stelle con un oculare a reticolo illuminato e in altri ambiti ben più importanti il mondo sarebbe stato molto più arretrato.

Con questo spirito di collaborazione, invece che di competizione, propongo questo primo post in cui metto a disposizione dei dati acquisiti con la mia strumentazione su un soggetto astronomico e invito chiunque fosse interessato a elaborare l’immagine e a convidivere il suo processo di elaborazione.
Il modo per partecipare è semplice:

  1. Da questo link si può scaricare una mia sessione fotografica sulla IRIS nebula, eseguita lo scorso 3 Agosto con un telescopio Newtoniano da 25 cm f4.8, montatura Ioptron iEQ45 e camera CCD a colori ST-2000XCM. Il file compresso (sono comunque 191 MB) contiene i light, i dark e i flat per chi volesse partire da zero. In alternativa, nella cartella principale trovate già il file grezzo da elaborare, frutto della media di 28 scatti da 720 secondi;
  2. Ognuno può elaborare (solo per uso personale e per questo progetto) nel modo che vuole l’immagine, che può poi inviarmi via mail (in versione jpg) a danielegasparri [at] yahoo.it (sostituite [at] con la @) corredandola con i passaggi e i software utilizzati (non serve descrivere in dettaglio tutti i parametri impostati per i filtri, ma sarebbe bello elencare tutti i tools e i passaggi fatti per arrivare al risultato);
  3. Le immagini elaborate e inviate alla mia mail, complete dei passi elaborativi effettuati, verranno pubblicate in questo post, corredate dal nome dell’utente (se non volete comparire con nome e cognome segnalatemelo via mail) e rappresenteranno un’ottima base di confronto tra diverse tecniche e differenti software di elaborazione;
  4. Dopo circa una settimana pubblicherò anche il mio risultato e i passi effettuati. Non lo faccio prima per non influenzare le vostre elaborazioni.

I dati che scaricherete non sono volutamente di qualità eccelsa perché sono stati ripresi con strumentazione economica accessibile a molti amatori (avrei potuto farvi elaborare un’immagine di Hubble ma non sarebbe stata molto indicativa delle immagini medie che ottengono gli astrofotografi!): si noterà il coma ai bordi del campo, qualche problema con l’inquadratura, qualche gradiente residuo dovuto a infiltrazioni di luce dal cielo e dalla strada vicina e dei colori duri da bilanciare perché ho ripreso senza un filtro taglia infrarosso, sfruttando quindi tutta la sensibilità della mia camera CCD a colori. Il cielo sotto cui è stata scattata questa immagine aveva una qualità media pari a 21.3 magnitudini su secondi d’arco al quadrato, non male per la nostra inquinata Penisola.

L’obiettivo di un’elaborazione (estetica) è semplice: estrapolare tutto il segnale ripreso, riuscendo a gestire bene le zone in cui questo è più forte e quelle in cui è più debole, minimizzare i difetti estetici e restituire allo stesso tempo un’immagine gradevole alla vista ma attinente alla realtà. Qualche informazione sulla natura della Iris Nebula può aiutare: si tratta di una zona ricca di gas freddo e polveri. Nei pressi della stella centrale questo diventa visibile come una nebulosa a riflessione, che ha un colore blu-azzurro. Lontano dalla luce della stella, gas e polveri diventano oscuri e asumono una tonalità leggermente virata verso il rosso/marrone.

Buona elaborazione!

Cosa aspettarsi dal proprio telescopio?

Cosa si vede con un telescopio amatoriale?

Il cielo è ricco di meraviglie, le cui forme e colori sono ben più vasti di tutte le opere d’arte mai concepite dall’uomo. Basta fare una rapida ricerca su internet con parole chiave come “galassie” o “nebulose” per innamorarsi dell’Universo. Proprio come un’irrazionale e irrefrenabile cotta adolescenziale, è questo il momento in cui rischiamo di perdere la lucidità e la calma, perché molto spesso si salta subito a una conclusione inevitabile: “Voglio vedere anche io quelle meraviglie, in diretta sul cielo, voglio comprare un telescopio e abbronzarmi con tutta quella luce e quei colori che mostra l’Universo!”

Purtroppo con questo post ho il poco gradevole compito di riportare tutti con i piedi per terra e di far capire quali sono i limiti e le possibilità che offre un telescopio amatoriale accoppiato al nostro strumento di osservazione, in gergo chiamato occhio.

Tutte le fotografie che possiamo osservare su internet sono, appunto, fotografie, ovvero rappresentazioni della realtà catturate attraverso strumenti molto più potenti dei nostri limitati occhi.

Il limite più grosso che ci impedirà sempre e comunque di avere le bellissime visioni, contrastate e colorate, che ci mostra invece google con estrema facilità è la modesta sensibilità del nostro occhio. Strumento formidabile per farci adattare e sopravvivere nell’aspro ambiente naturale, la nostra vista non ha dovuto di certo svilupparsi per osservare oggetti che fino all’invenzione del telescopio nessuno sapeva neanche che esistessero.

Arriviamo quindi alla prima e fondamentale regola che discrimina tra l’osservazione visuale e la fotografia: il nostro occhio non è abbastanza sensibile per vedere i contrasti e quasi sempre persino i colori di qualsiasi tipo di oggetto celeste, a esclusione delle stelle brillanti e dei pianeti. Non c’è telescopio che tenga: potremmo persino mettere l’occhio all’oculare di un telescopio da 10 metri di diametro ma tanto non riusciremmo a vedere una galassia colorata, come invece permette di fare la fotografia con strumenti persino più modesti di un telescopio giocattolo da 50 euro. Il motivo per cui molti appassionati passano spesso alla fotografia è per scoprire contrasti e sfumature di colore che solo i sensibili apparati fotografici possono rivelarci.

A prescindere dal colore, anche i contrasti percepiti degli oggetti variano molto tra l’osservazione e la fotografia. Come regola molto empirica e un po’ approssimata, ma che rende bene l’idea di quanta differenza ci sia tra quello che vediamo su uno schermo e quello che percepiamo all’oculare di un telescopio, non si fa un grande errore nell’affermare che tra una fotografia e l’osservazione visuale c’è di mezzo un fattore 10 in termini di diametro. Poiché il diametro del telescopio è ciò che per gran parte determina la visibilità e il contrasto degli oggetti osservati, quello che una buona fotografia mostra attraverso un telescopio di 10 centimetri di diametro è visibile, senza troppi sforzi, attraverso uno strumento 10 volte più grande, ovvero di un metro di diametro.

 

Impietoso confronto tra la fotografia, a sinistra, e quello che invece vede l'occhio attraverso lo stesso strumento e il medesimo cielo. Le immagini sono alla stessa scala!

Impietoso confronto tra la fotografia, a sinistra, e quello che invece vede l’occhio attraverso lo stesso strumento e il medesimo cielo. Le immagini sono alla stessa scala!

 

Confronto tra la resa di una fotografia a lunga esposizione ottenuta con un telescopio da 70 m di diametro, a sinistra, e la visione all'oculare di un telescopio binoculare da 60 cm di diametro. Al netto dei colori, tra osservazione e fotografia c'è una differenza di circa un fattore 10 a livello di diametro del telescopio.

Confronto tra la resa di una fotografia a lunga esposizione ottenuta con un telescopio da 70 m di diametro, a sinistra, e la visione all’oculare di un telescopio binoculare da 60 cm di diametro. Al netto dei colori, tra osservazione e fotografia c’è una differenza di circa un fattore 10 a livello di diametro del telescopio.

Poiché un telescopio da un metro di diametro non si trova in commercio per pochi euro, detta così sembra che sto dicendo che l’osservazione visuale sia una perdita di tempo: non è assolutamente vero. Quanto detto fino ad ora serve come terapia d’urto per farvi comprendere che non bisogna guardare le fotografie e sperare di osservare la stessa cosa attraverso il medesimo telescopio, perché non succederà mai.

Dopo aver distrutto tutte le false aspettative, è arrivato il momento di costruirne di nuove e sicuramente veritiere, perché una bella notizia in tutto questo pessimismo cosmico c’è: l’osservazione visuale può essere spettacolare e appagante, solo in modo diverso rispetto alle sensazioni e alle visioni che trasmette una fotografia astronomica. Quello che una fotografia astronomica, per quanto bella, non trasmetterà mai, è l’emozione di stare di fronte a un oggetto distante migliaia, se non milioni di anni luce, senza il freddo filtro del monitor di un computer. Quando si è all’oculare non importa se i contrasti sono deboli e i colori assenti, perché si è in contatto diretto con l’Universo, perché i nostri occhi stanno ricevendo luce che ha attraversato a 300 mila km/s i posti più remoti e affascinanti dell’Universo e in quel momento ha deciso di mostrarsi a noi e solo a noi, per regalarci uno sfuggente, quanto meraviglioso, sguardo verso il passato del Cosmo, un passato per noi presente, eppure distante migliaia, milioni di anni. Osservare il cielo al telescopio è il modo migliore e più emozionante per viaggiare a velocità incredibile a bordo di una immensa macchina del tempo ed esplorare luoghi e spazi dove nessun uomo è mai arrivato e che in pochi hanno persino osservato. E’ come stare in prima fila a uno, dieci, mille spettacoli teatrali; è come visitare milioni di musei, è come vivere mille vite tutte insieme.. E quando la nostra mente, impegnata nel comprendere la vastità e la grandiosità di quello che stiamo vedendo, ci fa percepire quel brivido di sfuggente consapevolezza che dura un millesimo di secondo o forse meno, ci si sente con un pizzico di orgoglio e tanta soddisfazione inquilini protagonisti e non più timidi ospiti di questo meraviglioso Universo.

Per osservare al meglio gli oggetti celesti serve prima di tutto un cielo scuro, lontano dalle luci delle città. Questo vale per le stelle, le nebulose, le galassie, gli ammassi stellari, ovvero per tutti gli oggetti a esclusione di Luna e pianeti, che invece possono essere osservati anche dalle inquinate città. Un cielo scuro di campagna o, meglio, di montagna, in notti in cui non è presente la Luna, è un requisito fondamentale per poter fare ottime osservazioni (e fotografie). Parleremo in un altro post della qualità del cielo e di come stimarla in dettaglio. Per ora accontentiamoci di qualche riferimento grossolano. Un cielo sufficientemente buio è infatti quello che nelle notti estive mostra con facilità la Via Lattea, spessa striscia di luce tagliata in due da un solco più scuro, che parte da sopra la testa e finisce verso l’orizzonte sud. Nelle notti invernali si deve percepire, seppur in modo molto attenuato, la stessa striscia. In tutti gli altri mesi dell’anno, invece, un buon indicatore della qualità del cielo è il piccolo carro: se riusciamo a vedere senza difficoltà tutte le stelle (non del grande carro, ma del piccolo!) allora il cielo è buono per fare proficue osservazioni telescopiche. La differenza tra un cielo illuminato e uno lontano dalle luci (e senza Luna) è enorme e può fare da discriminante, in molte occasioni, tra non vedere un oggetto e osservarlo quasi (QUASI!) come in fotografia.

Con un buon cielo a disposizione, occorre uno strumento che consenta di farcelo sfruttare, ovvero un telescopio. Anche su questo torneremo più volte, ma per ora capiamo bene i punti fondamentali, che sono due:

  • La potenza di un telescopio è determinata in larga parte dal diametro del suo obiettivo. Più è grande e più dettagli posso vedere;
  • Non c’è congegno elettronico che possa migliorare le prestazioni ottiche di un telescopio. Posso equipaggiare uno strumento con GPS, computer potenti, persino con generatori nucleari che garantiscono una vita (del telescopio, meno la nostra!) di centinaia di anni senza dover ricaricare le batterie, ma nessuno di questi congegni ci farà vedere meglio un oggetto, perché tutto dipende da quanto è larga la superficie che deve raccogliere la luce dell’Universo.

Detto questo, per osservare e non semplicemente intravedere gli oggetti del cielo profondo e i dettagli dei pianeti, serve uno strumento di un certo diametro. Fino a qualche lustro fa, il costo elevato degli strumenti costringeva a iniziare con telescopi da 60-80 mm di diametro, a volte 114: troppo poco per osservare con soddisfazione qualcosa oltre i crateri lunari, gli anelli di Saturno e qualche banda su Giove. Con la produzione cinese i prezzi si sono molto abbassati e oggi un telescopio già sufficientemente potente per poter osservare con relativa facilità centinaia di oggetti celesti (o migliaia) può costare meno di uno smartphone alla moda e durare sicuramente di più. Il diametro minimo, quindi, che permette di vedere buoni dettagli è intorno ai 15, meglio 20 centimetri. La configurazione migliore è quella Newton, perché più economica anche se ingombrante. In alternativa uno Schmidt-Cassegrain unisce anche leggerezza e compattezza. Cosa ci mettiamo sotto al telescopio, ovvero la montatura e gli eventuali sistemi computerizzati per puntare e seguire gli oggetti sono degli optional che facilitano la nostra vita ma non migliorano di certo le visioni che avremo. Per questo motivo, dal punto di vista delle visioni offerte all’oculare, un dobson da 20 centimetri, ovvero un telescopio newtoniano su un supporto molto spartano, che costa meno di 500 euro, offre le stesse prestazioni di uno Schmidt-Cassegrain su una pesante montatura equatoriali motorizzata, dal prezzo superiore ai 2000 euro. Quest’ultimo è uno strumento dedicato anche alla fotografia, utilissimo per puntare velocemente gli oggetti celesti e che ci evita di imparare a conoscere il cielo perché fa quasi tutto da solo.

Scendere sotto il diametro di 15 centimetri è consigliabile solo se siamo interessati all’osservazione di pianeti e stelle doppie, o se abitando in città, senza possibilità di spostarci, siamo obbligati a restringere il campo a queste categorie di oggetti brillanti. In questa situazione un rifrattore da 90-100 mm di focale, un Newton da 114-130 mm o un Maksutov o Schmidt-Cassegrain da 10-13 centimetri sono la scelta migliore, perché tanto non potremo mai sperare di sfruttare la grande capacità di raccolta della luce di diametri maggiori visto il luogo dal quale osserveremo e i pianeti presentano già interessanti dettagli con diametro di 10 centimetri.
Capito come funziona a grandi linee l’osservazione visuale e da cosa dipende, la domanda che sorge, direi spontanea, è la seguente: ma cosa posso sperare di vedere in concreto al variare del diametro del telescopio e della qualità del cielo?

Posto che i contrasti e i dettagli dipendono in modo forte dall’esperienza dell’osservatore (all’inizio sarà difficile vedere qualcosa, poi già dopo una settimana si vedrà molto di più) e dall’acutezza visiva, ho cercato di preparare una tabella in cui ci si può fare un’idea. La notizia buona è che quanto state per vedere rappresenta una situazione piuttosto pessimistica: con l’avanzare dell’esperienza la visione migliorerà nettamente.

Qualche oggetto del profondo cielo osservato con un telescopio da 50 mm di diametro (o un binocolo) sotto un cielo scuro.

Qualche oggetto del profondo cielo osservato con un telescopio da 50 mm di diametro (o un binocolo) sotto un cielo scuro.

 

Qualche oggetto del profondo cielo osservato con un telescopio da 150 mm di diametro sotto un cielo scuro.

Qualche oggetto del profondo cielo osservato con un telescopio da 150 mm di diametro sotto un cielo scuro.

 

Qualche oggetto del profondo cielo osservato con un telescopio da 250 mm di diametro sotto un cielo scuro.

Qualche oggetto del profondo cielo osservato con un telescopio da 250 mm di diametro sotto un cielo scuro.

 

Cosa dire invece di Luna e pianeti? Qui l’occhio si riprende la sua (parziale) rivincita, soprattutto sulla Luna, che mostra dettagli molto simili a quelli di una buona fotografia, con contrasti emozionanti e spettacolari giochi di luce.
Un po’ più difficoltosa l’osservazione dei pianeti luminosi, ma per un mero gioco di illusioni: durante le prime esperienze tutti i pianeti appariranno sempre troppo piccoli nel campo dell’oculare, eppure Giove, a 40 ingrandimenti è già grande quanto la Luna piena vista a occhio nudo. In questo contesto non bisogna cercare l’ingrandimento smodato (termine tecnicissimo!) ma convincere il cervello che stiamo vedendo un’immagine già sufficientemente grande a 150-200 ingrandimenti. Andare oltre questi valori necessita di telescopi da almeno 150 mm di diametro e una notevole stabilità dell’atmosfera.

Marte, a sinistra, e Giove, a destra, visti attraverso uno strumento da 100 mm di diametro a circa 200 ingrandimenti. Con il progredire dell'esperienza si vedranno molti più dettagli di queste due, pessimistiche, simulazioni.

Marte, a sinistra, e Giove, a destra, visti attraverso uno strumento da 100 mm di diametro a circa 200 ingrandimenti. Con il progredire dell’esperienza si vedranno molti più dettagli di queste due, pessimistiche, simulazioni.

 

A sinistra: tipico panorama lunare visibile già con strumenti da 80 mm di diametro a 100-150 ingrandimenti. A destra, lo stato dell'arte dell'osservazione lunare, grazie alla maestria di Giorgio Bonacorsi e un piccolo rifrattore da 80 mm di diametro. Riuscite a comprendere quanto conta l'esperienza?

A sinistra: tipico panorama lunare visibile già con strumenti da 80 mm di diametro a 100-150 ingrandimenti. A destra, lo stato dell’arte dell’osservazione lunare, grazie alla maestria di Giorgio Bonacorsi e un piccolo rifrattore da 80 mm di diametro. Riuscite a comprendere quanto conta l’esperienza?

 

Stesso strumento, stessa serata, stesso ingrandimento ma diversi osservatori, uno esperto e l'altro alla prima esperienza. Il modo migliore per migliorare non è comprare sempre nuovi e più potenti telescopi ma allenarsi sotto cieli scuri.

Stesso strumento, stessa serata, stesso ingrandimento ma diversi osservatori, uno esperto e l’altro alla prima esperienza. Il modo migliore per migliorare non è comprare sempre nuovi e più potenti telescopi ma allenarsi sotto cieli scuri.

confronto_stelle2

Come correggere le stelle allungate nelle nostre foto

Quante volte vi è successo di litigare con l’inseguimento del telescopio o con l’autoguida che sembra dotata di una propria, sadica, intelligenza e che ogni tanto si diverte a far uscire le stelle mosse sulle nostre sudatissime foto? Di solito, presi anche dallo sconforto, si prendono gli scatti rovinati e si buttano ma quest’operazione, viste le difficoltà affrontate per ottenere quegli scatti, non dovrebbe mai essere fatta alla leggera.

Per fortuna nella maggioranza dei casi possiamo recuperare le nostre foto, a patto che le stelle abbiano ancora una parvenza di astri puntiformi e non siano delle linee lunghe decine di pixel.

Ci sono due modi di aggredire questo problema, in base a quanto è grave:

 

Su una sessione di ripresa solo un paio di scatti mostrano stelle un po’ allungate, mentre gli altri sono tutti buoni. In questo caso una scuola di pensiero dominante prevede di non includere i pochi scatti venuti male nella somma. In realtà, se non vogliamo perdere neanche un po’ del sudato segnale, possiamo includere nella somma anche le poche immagini non perfette, a patto che le combiniamo con un algoritmo del tipo “Sigma Clip”. In pratica, al di là dell’interpretazione prettamente matematica, questo modo di mediare gli scatti tende a escludere tutti quei dettagli transienti che non compaiono nella maggioranza degli scatti. In questo modo possiamo includere immagini attraversate da aerei e satelliti senza che questi diventino visibili sull’immagine grezza da elaborare e anche nel caso di stelle non perfettamente puntiformi il difetto non verrà mostrato, se la maggioranza delle foto incluse nella somma avrà stelle perfette.

 

Tutte le foto che vogliamo sommare presentano stelle leggermente allungate. Questo è il caso più disperato, in cui tutti vorrebbero buttare il lavoro di una notte. Per fortuna a tutto (o quasi) c’è rimedio. Intanto usiamo tutti gli scatti per fare la somma e ricavare l’immagine grezza, che naturalmente in questa situazione mostrerà anch’essa le stelle leggermente allungate. A questo punto elaboriamola come se niente fosse, facendo stretch, regolando colori e chi più ne ha più ne metta. Come atto finale, poi, cerchiamo di porre rimedio a quelle brutte stelle allungate. Se l’immagine ha un grande formato, come quello tipico delle reflex, possiamo ridurre il difetto riducendo le dimensioni dell’immagine anche del 50%. I sensori da diversi milioni di pixel ci consentiranno ancora di avere un’immagine di generose dimensioni, più incisa, con meno difetti, tra cui stelle di certo meno allungate. Se il difetto persiste, o se non abbiamo grossi sensori da poterci permettere di perdere metà dei pixel, possiamo attaccare il problema in modo più creativo. Spesso una leggera deconvoluzione mitiga il brutto effetto, ma è complicata da usare e richiede immagini con ottimo segnale. Esiste un metodo, più semplice ed efficace, che si può attuare manualmente con Photoshop o qualsiasi altro programma di elaborazione grafica, in pochi ma efficaci modi:

  • Apriamo la nostra immagine in Photoshop;
  • Ruotiamola in modo che l’allungamento delle stelle sia perfettamente verticale o orizzontale. Questa operazione è fondamentale: se l’allungamento è diagonale potremo avere molti più problemi del previsto (ma potete, anzi, dovete provare!);
  • Selezioniamo tutta l’immagine, copiamola e incolliamola su un nuovo livello. D’ora in poi lavoreremo su questo;
  • Dobbiamo selezionare le stelle e solo le stelle. Di solito io procedo con lo strumento bacchetta magica con tolleranza attorno a 60 e con click successivi, tenendo premuto il tasto “shift”, seleziono tutte le zone contenenti il fondo cielo. In questo modo, in realtà, si seleziona tutto fuorché le stelle, ma poi con il comando “Selezione –> Inversa” otterremo la selezione sugli astri. Questa operazione è molto comune nell’elaborazione delle fotografie del profondo cielo, poiché si tende a separare l’oggetto e lo sfondo dal campo stellare, che ha caratteristiche che richiedono un’elaborazione differente, per questo motivo la do per scontata in questa situazione (ma magari ci torneremo in qualche post futuro). Nel nostro caso usiamo la selezione delle nostre stelle per fare un mezzo “miracolo”;
  • Dopo aver selezionato le stelle invertendo la selezione faticosamente fatta, espandiamola di un pixel e sfumiamola di altrettanto. A questo punto attorno alle stelle, almeno la grande maggioranza e di certo le più brillanti, quindi le più allungate, avremo tanti piccoli cerchietti. Il “miracolo” avviene nel passo successivo;

 

Selezioniamo le stelle, espandiamo e sfumiamo la selezione di un pixel

Selezioniamo le stelle, espandiamo e sfumiamo la selezione di un pixel

  • Applichiamo un filtro che in pochi conosceranno. Si chiama “Sposta” o “Offset” se abbiamo la versione in inglese. Si trova in “Filtro –> Altro –> Sposta”. Si aprirà una finestra in cui potremo far scorrere due cursori che sposteranno le nostre stelle di una quantità che imposteremo noi. Nel nostro caso dobbiamo spostare il contenuto della selezione di una piccola quantità, quasi sempre un pixel, nella direzione perpendicolare all’allungamento. Se le stelle sono allungate lungo l’asse verticale, dovremo quindi spostare lungo l’asse orizzontale; viceversa se l’allungamento è orizzontale (ecco perché prima ho detto di orientare in modo furbo l’immagine!). Il verso non è importante, quindi è indifferente se impostiamo un valore di +1 o -1. Confermiamo e osserviamo cosa succede: tutte le stelle della nostra selezione si sono spostate di un pixel in una direzione! Ma come può aiutarci questo a correggerne l’allungamento? È nel prossimo punto che avviene la “magia”:
Applichiamo il filtro "Sposta" lungo la direzione perpendicolare all'allungamento

Applichiamo il filtro “Sposta” lungo la direzione perpendicolare all’allungamento

  • Togliamo la selezione e impostiamo il modo di unione di questo livello su “Schiarisci” (in basso a destra, nella scheda “Livelli”; di default è impostato su “Normale”) e osserviamo cosa accade: solo la porzione delle stelle che si trova spostata di un pixel nel livello superiore viene aggiunta al livello inferiore contenente l’immagine originale e le stelle diventano all’improvviso molto più rotonde!
Combiniamo i livelli con il metodo "Schiarisci" e uniamoli: le stelle ora sono molto più rotonde di prima!

Combiniamo i livelli con il metodo “Schiarisci” e uniamoli: le stelle ora sono molto più rotonde di prima!

Abbiamo appena compiuto un’operazione che sembra davvero fantascienza, ma è reale e ben spiegabile, anche se, come è facile intuire, non bisogna abusarne e di certo non bisogna applicarla se vogliamo usare le nostre immagini per scopi scientifici. Si tratta di un mero ritocco estetico che però è in grado di salvare la nostra serata, trasformando un’immagine mediocre con astri allungati in uno scatto che non contiene più neanche il ricordo delle imprecazioni dette durante la serata e nella prima parte dell’elaborazione, quando pensavamo che sarebbe stato tutto da cestinare.

Per far capire quanto sia semplice l’operazione, ho preparato un file immagine di Photoshop contenente una mia foto rovinata da una guida poco precisa. Potete scaricarlo qui e fare pratica. In questo file ho già copiato l’immagine sul livello superiore che useremo per spostare le stelle e già fatto la selezione delle stelle per voi (già espansa e sfumata, quindi non dovete fare nulla): basta caricarla con il comando “Selezione –> Carica selezione” (si chiama “Stelle”). A questo punto applichiamo, al Livello 1, il filtro “Sposta” con movimento di un pixel lungo l’asse orizzontale. Confermiamo e impostiamo il metodo di unione di questo livello su “schiarisci”: improvvisamente vedremo l’immagine sottostante con le stelle molto più rotonde. Uniamo i livelli e salviamo la nostra immagine rinata a una nuova, insperata, vita!

Conoscevate questo metodo? Quali altri espedienti conoscete per porre rimedio a stelle leggermente allungate?

12651314_1259548330738530_8157651378577561554_n

L’inizio di una nuova avventura!

Quando Riccardo Cappellaro, di Teleskop Service Italia, mi invitò a usare questo spazio per dare consigli sull’osservazione e la fotografia del cielo, non me lo feci ripetere due volte perché l’idea era potente, utile e anche innovativa. Con l’avvento dei social network la frammentazione dell’informazione ha raggiunto punte mai conosciute fino a questo momento. Il risultato? Ci sono migliaia di posti in cui trovare informazioni, ma sono paradossalmente troppi e non necessariamente accurati, anzi, a volte ci si imbatte in contraddizioni che non fanno altro che rendere ancora più confuso il nostro cammino.

Nel mio blog personale mi occupo di divulgazione astronomica ma non affronto quasi mai il mondo dell’astronomia pratica, che invece offre un’opportunità più unica che rara in un ambito scientifico: trasformarsi da spettatori passivi a esploratori attivi, fare scienza, meravigliarsi dell’Universo studiandolo in prima persona, non necessariamente con l’approccio freddo e distaccato che invece compete ai professionisti. L’astronomia offre una meravigliosa opportunità di trasformarci in esploratori dell’Universo, con i nostri tempi, i nostri desideri, la nostra innata curiosità e voglia di stupirci, magari allontanandoci con un pizzico di soddisfazione dalla vita frenetica e avara di gioie di tutti i giorni. L’astronomia è conoscenza, consapevolezza, terreno fertile per tutti i nostri sogni. E’ un divertimento profondo e puro che spesso ci regala importanti lezioni di vita e di certo ci garantisce un approccio migliore ai problemi e alle situazioni di tutti i giorni.

Iniziare un cammino attraverso l’astronomia amatoriale, o proseguire inseguendo la costante voglia di migliorare, di confrontarsi, di esplorare sempre più nel profondo, non è mai facile, eppure la strada che abbiamo scelto, o che magari vorremmo solo provare a seguire, è ricchissima di soddisfazioni, di gioie, di momenti indescrivibili che solo l’Universo può regalare. Per ora, magari, è avvolta nella nebbia già alla prima curva o, per chi è un po’ più esperto, dopo un breve rettilineo che ci ha già fatto assaporare le sue meraviglie. Esperti o meno, fotografi o visualisti, alla ricerca del primo telescopio o di accessori che possano permettere di diradare la nebbia di fronte a noi, all’inseguimento di un consiglio, di uno strumento, di un luogo in cui le informazioni non siano frammentate e confuse, o solo per assaporare la passione che traspare e trasparirà dalla mia passione innata per l’osservazione del cielo, nonché la professionalità e disponibilità di tutto lo staff di Teleskop Service Italia, vi do il benvenuto in questo spazio, in questa nuova avventura che affronteremo passo passo insieme, condividendo pareri, idee, suggerimenti e consigli, proprio come si fa nella scienza vera. Perché fare astronomia amatoriale vuol dire anche e soprattutto condividere, al di là di tutte le questioni che di giorno ci dividono, il luogo più meraviglioso, sorprendente e spettacolare che potremo mai sperimentare: l’Universo intero.

Alla fine di tutta questa presentazione, forse avrete ancora una domanda: cosa troverò in pratica in questo spazio? Semplice: tutto ciò che riguarda il mondo dell’astronomia amatoriale. Ci saranno consigli sia per i neofiti che per i più esperti; ci saranno test strumentali, tecniche di osservazione, di fotografia astronomica e tutti gli eventi più importanti che avremo di fronte a noi nei mesi a venire.

 

Daniele Gasparri

eq2_2b

Fotografia astronomica con meno di 200 euro

La fotografia astronomica è giudicata, spesso a ragione, come un hobby molto costoso e complicato, accessibile solo a chi dispone di una certa disponibilità di denaro. Per fortuna questa regola è valida solo per chi vuole fare riprese al telescopio, un campo che rappresenta una delle possibili branche di questa entusiasmante attività. In realtà il cielo è così vasto e ricco di soggetti che non è necessario per forza di cose un telescopio super corretto e sorretto da una solida montatura equatoriale per effettuare scatti spettacolari.

La fotografia a grande campo di soggetti estesi come costellazioni, la Via Lattea, alcune galassie, ammassi aperti o fenomeni come la luce zodiacale e le aurore polari, a volte è più spettacolare delle riprese al telescopio e di certo permette di catturare eventi e fenomeni che nessuno strumento astronomico ci potrà mai regalare a causa del piccolo campo disponibile. A torto ritenuta la parente povera della fotografia astronomica, in questi ultimi anni la fotografia a grande campo si è guadagnata lo status di branca indipendente, e spettacolare, dell’astronomia.

Il mercato attuale prevede molte soluzioni in grado soddisfare sia chi è già esperto che i neofiti. Gli astroinseguitori, come lo Star Adventurer, sono accessori versatili, leggeri, precisi e tecnologicamente in grado di soddisfare le più disparate esigenze, come la creazione di spettacolari filmati time-lapse e la possibilità di essere montati su qualsiasi treppiede fotografico. Se abbiamo a disposizione la cifra richiesta per l’acquisto di un buon astroinseguitore e la nostra passione è già consolidata, allora non c’è niente di meglio per accompagnarci alla ricerca degli spettacoli e dei cieli più scuri del mondo, comodamente sistemato in un comodo zaino da portare ovunque.

Se invece siamo alle prime armi e non abbiamo a disposizione il denaro richiesto per l’acquisto di uno strumento che rappresenta il meglio per quanto riguarda le foto a grande campo, possiamo rinunciare a qualche comodità tecnologica, senza però dover rinviare la nostra voglia di fotografia astronomica. Alla fine, infatti, per fare fotografia a grande campo del cielo serve solo una cosa, oltre al cielo scuro: una piccola montatura che controbilanci il movimento della Terra e ci permetta di avere stelle puntiformi.

La soluzione più economica per fare fotografia a largo e medio campo (oltre alla reflex, che dobbiamo già avere!) è rappresentata proprio da una piccola montatura equatoriale motorizzata, magari semi-sconosciuta o sottovalutata, ma che nel silenzio generale fa il suo dovere senza troppi problemi. La EQ2 Astrofoto è un gioiellino che per il prezzo di vendita, minore di 200 euro, non ha eguali. Dotata già di un robusto treppiede e di tutti gli accessori per collegare sia una reflex che un piccolo telescopio, viene fornita con il motore in ascensione retta e una pulsantiera, il tutto alimentato a batterie.

eq2_2b

La EQ2 astrofoto è la montatura equatoriale motorizzata più economica per effettuare con successo fotografie a largo campo e lunga posa.

Ho utilizzato con successo questa configurazione per i miei viaggi intorno al mondo, dal deserto australiano alla tundra della Lapponia, passando per i cieli montani di mezza Italia. Una volta stazionata a dovere, con un po’ di pratica per sopperire alla mancanza del cannocchiale polare, il pacco batterie garantisce più di dieci notti di funzionamento e l’inseguimento è sufficientemente preciso per effettuare pose di durata illumitata fino a obiettivi da 20 mm di focale. Con obiettivi dell’ordine dei 55 mm si può arrivare a 10 minuti senza mosso. Addirittura, se ci colleghiamo un piccolo rifrattore da 60-70 mm f5-7 può garantire pose inseguite anche fino a un minuto di esposizione. Non sembra tanto, ma può consentire di ottenere risultati di tutto rispetto anche su soggetti telescopici, come la nebulosa di Orione, la Rosetta, la Testa di Cavallo, la Laguna e molti altri angolarmente estesi, il tutto senza utilizzare un’autoguida, senza cavi e senza disporre di corrente elettrica.

La EQ2 Astrofoto non sarà di certo la raffinata soluzione adottata dai moderni astroinseguitori, non ha un cannocchiale polare, è un po’ delicata, non può fare autoguida e non possiede elettronica, ma per iniziare a divertirsi e fare la necessaria pratica non ha eguali. E con meno di 200 euro siamo pronti per fare spettacolari scatti al cielo; perché l’importante, in molte cose della vita, è non permettere alla mancanza di denaro di fermare i nostri inestimabili sogni.

Orione ripreso con un obiettivo da 16 mm f2.8 dall’Australia su montatura EQ2 Astrofoto. 4 pose da 5 minuti.

Orione ripreso con un obiettivo da 16 mm f2.8 dall’Australia su montatura EQ2 Astrofoto. 4 pose da 5 minuti.

 

La grande nube di Magellano ripresa con un obiettivo da 85 mm f1.2. 22 scatti da 2 minuti.

La grande nube di Magellano ripresa con un obiettivo da 85 mm f1.2. 22 scatti da 2 minuti.

 

Al limite delle potenzialità della montatura EQ2 Astrofoto: la nebulosa Testa di Cavallo ripresa con un rifrattore acromatico 80 mm F400 mm. 167 pose da 30 secondi.

Al limite delle potenzialità della montatura EQ2 Astrofoto: la nebulosa Testa di Cavallo ripresa con un rifrattore acromatico 80 mm F400 mm. 167 pose da 30 secondi.

sole_copertina

Come fare ottime fotografie del Sole in H-alpha con una camera a colori

Fotografare il Sole attraverso un telescopio solare in H-alpha è una delle attività più belle e rilassanti dell’astronomia amatoriale, sia per la spettacolarità dei dettagli visibili, sia perché si può fare a qualsiasi ora del giorno (NON della nottee!) in pochi minuti.

Se però tutto fosse davvero facile e immediato, questo mio post si concluderebbe ora e non avrebbe neanche avuto senso scriverlo. Purtroppo, quindi, le cose sono leggermente diverse.

Un telescopio solare in H-alpha (o in altre lunghezze d’onda, come il calcio) mostra solo una piccolissima finestra di luce, che di fatto è monocromatica. Questo lo possiamo notare quando facciamo osservazioni: in H-alpha il Sole si presenta monocolore, di un rosso intenso privo di sfumature di tonalità. Non potrebbe essere altrimenti poiché non passa nessun’altra lunghezza d’onda se non quella dell’idrogeno Alpha a 656,3 nm. Per questo motivo, se vogliamo ottenere fotografie di ottima risoluzione ed estetica, è fortemente consigliato utilizzare una camera monocromatica e colorare poi la nostra foto in fase di elaborazione, se vogliamo dargli una parvenza di colori (sebbene non corretti perché stiamo lavorando su una sola lunghezza d’onda).

Le camere monocromatiche però non sono tanto diffuse come quelle a colori, soprattutto perché in questa categoria rientrano anche le reflex (molto meglio se modificate!). Cosa accade allora se proviamo a fare una foto (o un filmato) con una camera a colori attraverso un telescopio solare? Che se non stiamo attenti lo scatto sarà da buttare.

Le camere a colori, infatti, hanno dei filtri rossi, verdi e blu direttamente sui pixel del sensore e in questo modo riescono a catturare un’immagine a colori in un unico scatto. Quando lavoriamo però nella regione H-alpha, quindi nel rosso profondo, solo i pixel rossi, che sono solo ¼ del totale, riceveranno una grande quantità di luce: questo porta subito una cospicua perdita di risoluzione. Come se non bastasse, poi, la sorgente monocromatica inganna il software di controllo della fotocamera (e i nostri occhi che guardano lo schermo) restituendoci nella maggioranza dei casi un Sole uniformemente rosso e privo di tutti quei dettagli che risultavano evidenti all’oculare. Questo succede perché se cerchiamo di regolare la giusta luminosità complessiva, andremo per forza di cose a saturare l’immagine nel canale rosso, nonostante a monitor il disco solare ci sembri ancora piuttosto scuro e l’istogramma totale sembrerebbe confermare la nostra sensazione (sbagliando).

Tipica fotografia solare scattata con una camera a colori (scatto singolo di un video). Dove sono finiti i dettagli del disco? E le protuberanze perché sono così deboli? E’ tutta una questione di corretta esposizione…

Tipica fotografia solare scattata con una camera a colori (scatto singolo di un video). Dove sono finiti i dettagli del disco? E le protuberanze perché sono così deboli? E’ tutta una questione di corretta esposizione…

Come possiamo ottenere buone immagini del Sole in H-alpha anche con camere a colori? È possibile?

Certo che è possibile, basta solo applicare la giusta tecnica, che in qualche modo prevede di ingannare il sensore e il software di controllo della camera a colori.

La notizia migliore arriva dalla scarsa qualità della griglia di filtri colorati posta di fronte a ogni sensore a colori: i filtri blu e soprattutto verdi, infatti, sono parzialmente trasparenti alla lunghezza d’onda H-alpha, come si vede nell’immagine precedente, nella quale, a rigore di logica, solo il canale rosso avrebbe dovuto contenere informazione.  Possiamo allora sfruttare a nostro vantaggio questo “difetto”: l’obiettivo è infatti quello di concentrarci sul canale verde, che possiede la migliore risoluzione di tutti (perché i filtri verdi coprono metà del sensore). In fase di elaborazione, poi, estrarremo solo questo come se fosse un’immagine monocromatica da elaborare, dimenticando (quasi) il rosso (saturato) e il blu (troppo debole e con poca risoluzione).

Il punto fondamentale, quindi, è trovare in fase di ripresa la giusta combinazione tra esposizione e guadagno, tale per cui si abbia la corretta luminosità per il canale verde, trascurando quello che succede nel rosso, che sarà sempre saturo. La cosa interessante è che quando raggiungeremo la luminosità corretta per il canale verde l’immagine del Sole ci apparirà, all’improvviso, ricca di colori tendenti al magenta e pullulerà di tutti quei dettagli che prima, curando solo la luminosità del canale rosso, non riuscivamo a scorgere. A questo punto facciamo filmati (se abbiamo camere planetarie) o effettuiamo almeno una trentina di scatti (se abbiamo una reflex) e prepariamoci alla fase di elaborazione.

Eccoli i dettagli che vedevamo anche all’oculare! Con le camere a colori bisogna concentrarci nell’ottenere la giusta luminosità per il canale verde, saturando il rosso. In questo modo vedremo apparire i dettagli sulla nostra immagine e in fase di elaborazione useremo solo il canale verde per estrapolare tutti i dettagli.

Eccoli i dettagli che vedevamo anche all’oculare! Con le camere a colori bisogna concentrarci nell’ottenere la giusta luminosità per il canale verde, saturando il rosso. In questo modo vedremo apparire i dettagli sulla nostra immagine e in fase di elaborazione useremo solo il canale verde per estrapolare tutti i dettagli.

L’allineamento e lo stacking si fanno normalmente come se fosse una comune immagine. Quando avremo l’immagine raw dovremo, prima di fare qualsiasi altra cosa, estrarre il canale verde. L’estrazione del canale verde si può fare con ogni software a partire dall’immagine a colori. Con Photoshop, ad esempio, possiamo aprire l’immagine, posizionarci sul canale verde e fare copia e incolla in una nuova immagine. Con MaxIm DL basta dare il comando “Color –> Split tricolor”. In alternativa, se abbiamo usato Registax per fare la somma dei nostri scatti (con Autostakkert questo “trucco” non funziona), possiamo salvare l’immagine in formato fit e provvederà lui, in automatico, a separare i canali in altrettanti file.

Ora dobbiamo elaborare leggermente la nostra immagine estratta dal canale verde con i soliti filtri di contrasto. Tutti i programmi vanno bene ma presto vi accorgerete che farà la sua comparsa una strana e fastidiosa griglia: si tratta della traccia lasciata dalla matrice di filtri colorati della camera di ripresa. Possiamo eliminare questo difetto all’istante: basta applicare, prima di qualsiasi altra elaborazione, un filtro gaussiano di raggio (circa) 1 pixel. In Photoshop il filtro si trova in “Filtro –> Sfocatura –> Controllo sfocatura” ma consiglio di applicarlo con software dedicati come MaxIm DL, Registax o IRIS; quest’ultimo è il migliore. Con questa operazione preliminare saremo in grado di applicare filtri di constrasto (maschere sfocate o wavelet) in modo molto più efficace.

Effetto di un filtro gaussiano su un'immagine solare ottenuta con una camera a colori ed estratta dal canale verde. In questo modo si ridimensiona moltissimo l'effetto della griglia di filtri posta sopra il sensore.

Effetto di un filtro gaussiano su un’immagine solare ottenuta con una camera a colori ed estratta dal canale verde. In questo modo si ridimensiona moltissimo l’effetto della griglia di filtri posta sopra il sensore.

 

Con l’immagine del canale verde elaborata ci accorgeremo presto che le protuberanze sembreranno spente e deboli. In questo caso ci viene in aiuto il vantaggio di aver fatto foto con una camera a colori, perché non dovremo fare una nuova ripresa sovraesposta per il disco per estrapolare il segnale delle protuberanze, ma basterà recuperare il canale rosso della nostra immagine di partenza a colori. Se il disco è saturo, le protuberanze si dovrebbero vedere molto bene e a questo punto potremmo trasferire questa informazione sulla nostra immagine estrapolata dal canale verde (e già elaborata) per ottenere una fotografia solare completa, con dettagli della cromosfera e delle protuberanze.

Vediamo il tutto con un esempio pratico. A questo link potete scaricare i due canali, rosso e verde, estratti da un’immagine a colori ed entrambi elaborati con pochi filtri di contrasto (dopo il solito gaussiano, o filtro sfocatura, di raggio 1 pixel per togliere la griglia di filtri).

Apriamo le immagini in Photoshop e copiamo l’immagine estratta da quello che era il canale rosso sull’immagine che proveniva dal canale verde.

Il canale verde conteneva dettagli del disco, quello rosso le protuberanze. Possiamo prendere il meglio da entrambe le immagini senza sacrificare nulla. Copiamo l’immagine che era stata estratta dal canale rosso sopra quella che era stata estratta dal canale verde.

Il canale verde conteneva dettagli del disco, quello rosso le protuberanze. Possiamo prendere il meglio da entrambe le immagini senza sacrificare nulla. Copiamo l’immagine che era stata estratta dal canale rosso sopra quella che era stata estratta dal canale verde.

Poniamo l’opacità di questo nuovo livello a zero e spostiamoci sul livello di sfondo rappresentato dal fu canale verde. Con lo strumento bacchetta magica e tolleranza alta, tipicamente tra 50 e 100 (in questo caso ho usato 80) clicchiamo in un punto qualsiasi del fondo cielo. Magicamente si formerà una selezione attorno al disco solare che non includerà le protuberanze.

Dobbiamo selezionare tutto tranne il disco, comprendendo nella selezione anche le eventuali deboli protuberanze del nostro originario canale verde.

Dobbiamo selezionare tutto tranne il disco, comprendendo nella selezione anche le eventuali deboli protuberanze del nostro originario canale verde.

A questo punto il gioco è semplice: sfumiamo la selezione di un pixel. Ora spostiamoci sul livello contenente l’immagine proveniente dal canale rosso (senza aumentarne l’opacità), facciamo copia (ctrl+c) e incolla (ctrl+v) e la “magia” è completa: comparirà un nuovo livello contenente solo la parte esterna della cromosfera, con le protuberanze ben visibili!

Un anello di fuoco attorno al Sole: sono comparse le protuberanze che erano tanto evidenti in quello che era il canale rosso della nostra foto.

Un anello di fuoco attorno al Sole: sono comparse le protuberanze che erano tanto evidenti in quello che era il canale rosso della nostra foto.

Giochiamo un po’ con l’opacità per regolare la luminosità di questo anello attorno al nostro Sole e poi uniamo i livelli. La nostra immagine è completa. Potremo volerla colorare, ma su questo argomento tornerò con un post adatto, così anche chi utilizza camere monocromatiche potrà trovare ottimi spunti per rendere ancora più bella ogni immagine solare. Nel frattempo, avete idee/suggerimenti su come come dare il colore alla nostra immagine solare in H-alpha, prima che vi sveli la mia ricetta preferita?

In questo caso ho impostato l’opacità del livello con le protuberanze al 53% e regolato le curve per far vedere bene le protuberanze più deboli ma senza creare un vistoso e brutto effetto di anello di fuoco attorno al Sole.

In questo caso ho impostato l’opacità del livello con le protuberanze al 53% e regolato le curve per far vedere bene le protuberanze più deboli ma senza creare un vistoso e brutto effetto di anello di fuoco attorno al Sole.

1236698_714259745267394_217280653_n

Quale primo telescopio per un giovane appassionato?

Ci sono passato in prima persona quando a 10 anni, senza sapere nulla dell’astronomia ma già stregato dalla vista dei crateri lunari con un binocolo, chiesi con insistenza un telescopio ai miei genitori, che non sapevano come muoversi e poi non sapevano aiutarmi nel farlo funzionare.

La voglia di esplorare il cielo e la curiosità per l’astronomia e per la bellezza di quella cupola cristallina sopra le nostre teste, nascono spesso proprio tra i 7 e i 13 anni, ma questa è un’età che non consente di effettuare una scelta e un successivo percorso in modo indipendente dal parere e dall’aiuto dei genitori, che spesso si ritrovano a navigare disperati su internet alla ricerca di uno strumento da regalare al proprio figlio.

Niente paura, cerchiamo di fare chiarezza in questo post.

Intanto diciamo subito che il vostro aiuto, cari genitori, sarà fondamentale sia per la giusta scelta che per l’eventuale proseguimento della passione, quindi anche voi dovrete diventare degli astrofili con un corso accelerato.

Lo strumento da regalare a un giovane appassionato non dovrebbe essere troppo costoso, ma neanche tanto economico da risultare inutilizzabile. La mia regola è semplice: pensate a uno smartphone da regalare a vostro figlio e sostituitelo con un telescopio, senza togliere né aggiungere denaro: non ve ne pentirete e non se ne pentirà neanche lui, se gli farete capire bene il valore dell’oggetto che gli state regalando.

Con questa regola il budget minimo si aggira attorno ai 100 euro (forse anche meno) e non supera i 300: un telescopio di costo maggiore non sarà sfruttato a dovere, anzi, potrebbe rivelarsi un problema. Non considerate il puntamento automatico ma puntate tutto sull’esplorazione, sul fatto che la ricerca a mano degli oggetti fa parte integrante del gioco ed è molto istruttiva, sia per voi che per vostro figlio.

Un telescopio ideale è uno strumento leggero, di buona qualità ottica, non ingombrante e difficile da rompere. Sotto questo punto di vista un rifrattore è probabilmente l’ideale.

 

1236698_714259745267394_217280653_n

Io e il mio primo telescopio: un rifrattore acromatico da 80 mm di diametro su montatura altazimutale

 

Ho iniziato con un rifrattore da 80 mm, tanti anni fa e ancora oggi mi sento di consigliarlo. Lo starscope 80/900 di TS potrebbe essere il compromesso giusto tra potenza, trasportabilità, qualità ottica, facilità d’uso e prezzo. La montatura equatoriale dovrà essere stazionata ma garantirà poi la possibilità di seguire bene le stelle, di inserire un eventuale motorino per l’inseguimento degli oggetti e potrà persino essere usata più avanti per farci anche qualche scatto fotografico. Con questa configurazione ho fatto splendide osservazioni e persino delle fotografie ai pianeti, alla Luna e a molte costellazioni dai 10 ai 17 anni.

Se il budget è più basso, lo strumento minimo è rappresentato dallo Starscope 767, un telescopio Newtoniano da 76 mm di diametro. Il prezzo è alla portata di tutti ed è forse più facile da usare per i più giovani, perché non ha quella strana montatura equatoriale ma un più tradizionale treppiede, detto anche montatura altazimutale. Attenzione, però, perché la potenza ottica, così come la versatilità, sono inferiori alla configurazione costituita dal rifrattore sopra citato.

 

Tipici telescopi per giovani astrofili: a sinistra un versatile rifrattore da 80 mm su montatura equatoriale, a destra un più economico riflettore Newton su montatura altazimutale

Tipici telescopi per giovani astrofili: a sinistra un versatile rifrattore da 80 mm su montatura equatoriale, a destra un più economico riflettore Newton su montatura altazimutale

 

In entrambi i casi questi strumenti non richiedono molta manutenzione e sono molto adatti per osservare Luna, pianeti, ammassi stellari e qualche brillante nebulosa. Per andare più in profondità servirebbe uno strumento più potente e un cielo molto scuro, ma posso parlare per esperienza diretta: vostro figlio, se ben motivato e aiutato, non sentirà il bisogno di cambiare telescopio per molti anni. Io ho osservato Giove e mi sono divertito nel disegnare le sue struttura atmosferiche e la danza dei 4 principali satelliti per oltre due anni, senza sentire il bisogno di osservare altro!

Un ultimo consiglio: non affidatevi a siti generalisti, guardando solo il prezzo. Alcuni telescopi venduti negli enormi market virtuali, dal prezzo accattivante, sono di fatto dei fondi di bottiglia. In generale evitate sempre quegli annunci in cui si pubblicizza la vendita di un “telescopio professionale”. Il telescopi professionali sono più grossi di una casa a due piani e di certo non si vendono a 100 euro. Chiunque dica il contrario è da guardare con sospetto!

L’occultazione di Venere da parte della Luna ripresa il 18 giugno 2007 alle 17:54 del pomeriggio. Il filtro passa infrarosso da 700 nm ha aumentato in contrasto come se la foto fosse stata fatta di notte.

Un filtro indispensabile in fotografia: l’infrarosso

Chiunque si diverta a fare foto ai pianeti, dai neofiti ai più esperti, deve fare i conti con un nemico comune: la turbolenza atmosferica. Si possono possedere gli strumenti più potenti, padroneggiare le tecniche più sopraffine, utilizzare le camere più sensibili, ma la turbolenza atmosferica è così democratica che non guarda in faccia nessuno e ci ricorda, fin troppo spesso, quanto in astronomia ogni successo debba essere sudato.

Con Marte ancora padrone dei nostri cieli, ma anche molto basso sull’orizzonte, le serate con buon seeing, ovvero con bassa turbolenza, in cui ottenere scatti ad alta risoluzione, saranno davvero scarse. Anche la Luna si presenterà generalmente più bassa sull’orizzonte rispetto alla stagione primaverile o invernale, con il rischio concreto di fare la fine del dio della guerra: entrambi affogati nel ribollire atmosferico.

In fotografia planetaria possiamo arginare l’effetto nefasto della turbolenza atmosferica con un filtro che a volte fa davvero miracoli: un passa infrarosso, detto IR-pass.

Tutti i sensori fotografici sono sensibili alle lunghezze d’onda infrarosse. In generale questa parte dello spettro viene eliminata usando il classico filtro taglia infrarosso, ma quando la turbolenza è alta bisogna ricorrere a misure drastiche: non più un filtro taglia infrarosso ma un PASSA infrarosso, in modo da lavorare alle lunghezze d’onda invisibili al nostro occhio ma alle quali la turbolenza migliorerà, a volte anche molto. Con un filtro passa infrarosso ci si dovrà accontentare di immagini in bianco e nero, che però potremo “colorare” con una ripresa a colori ottenuta poco prima o dopo, se proprio non vogliamo rinunciare all’effetto cromatico, anche se questa fosse di scarsa qualità.

Un filtro IR-pass su Marte ha anche il privilegio di aumentare di molto il contrasto dei dettagli superficiali: il pianeta si arricchirà di chiaroscuri che prima, sul monitor, non si sarebbero visti.

marte

Quando il seeing non è perfetto, il filtro passa infrarosso su Marte può fare la differenza tra vedere e non vedere dettagli superficiali.

 

Nel caso della Luna, un filtro passa infrarosso riduce leggermente i contrasti ma questo non è un danno, anzi, è un vantaggio quando si riprendono zone vicine al terminatore che spesso presentano forti differenze di luminosità. I bordi dei crateri saranno più difficili da saturare e la ripresa fotografica ne guadagnerà molto.

Il filtro passa infrarosso si può usare solo in fotografia e non in visuale e solo su dispositivi che non possiedono incorporato un filtro taglia infrarosso, come il caso delle reflex non modificate. Con camere planetarie come le ASI, sia a colori che monocromatiche, e in generale con ogni camera CCD per astronomia, il problema non si pone e questo filtro potrebbe salvare una serata fotografica altrimenti rovinata.

I sensori digitali sono sensibili fino a 1000 nm di lunghezza d’onda, ma con la sensibilità che diminuisce progressivamente a partire dai 700 nm, lunghezza d’onda alla quale inizia, convenzionalmente, l’infrarosso. Di conseguenza, nonostante esistano in commercio filtri infrarossi di diverse bande passanti, il consiglio è di iniziare con uno più facile da domare, ovvero che abbia una banda passante che inizia tra i 680 e i 700 nm.

Non è finita qui. Nell’infrarosso, inoltre, il fondo cielo diventa così scuro che è possibile persino fare fotografie dei corpi del Sistema Solare anche di giorno. L’emblema di questa rivoluzione è rappresentato dalla Luna, che pochi giorni dopo la fase nuova mostra con il massimo contrasto regioni altamente spettacolari, come il grande mare Crisum. Se aspettiamo di fare fotografie con il Sole sotto l’orizzonte, il nostro satellite sarà troppo basso per garantirci una risoluzione accettabile. Il problema viene quindi risolto facendo foto di giorno, con la Luna alta sull’orizzonte e con il filtro passa infrarosso che ci regalerà lo straordinario effetto di una normale ripresa notturna e mostrerà dettagli lunari che pochi osservatori hanno ripreso con tale dettaglio.

L’occultazione di Venere da parte della Luna ripresa il 18 giugno 2007 alle 17:54 del pomeriggio. Il filtro passa infrarosso da 700 nm ha aumentato in contrasto come se la foto fosse stata fatta di notte.

L’occultazione di Venere da parte della Luna ripresa il 18 giugno 2007 alle 17:54 del pomeriggio. Il filtro passa infrarosso da 700 nm ha aumentato in contrasto come se la foto fosse stata fatta di notte.

Un filtro passa infrarosso è il grande segreto che ci permetterà anche di fare ottime fotografie di Mercurio, il piccolo pianeta che purtroppo non si allontana più di 20° dal Sole. Ogni volta che proveremo a osservarlo o fotografarlo di notte lo troveremo bassissimo sull’orizzonte e privo di qualsiasi dettaglio. Con un filtro infrarosso, invece, il pianeta diventa visibilissimo anche di giorno, quando si trova alto sull’orizzonte. E’ in queste condizioni che ho trovato le migliori occasioni per fotografarlo in alta risoluzione e scoprire che anche questo elusivo corpo celeste mostra fini e interessantissimi dettagli, che troppo spesso vengono nascosti dalla turbolenza atmosferica.

Mercurio ripreso di giorno, quando è alto sull’orizzonte e con un filtro passa infrarosso: questo è l’unico metodo per ottenere immagini in alta risoluzione di questo elusivo pianeta.

Mercurio ripreso di giorno, quando è alto sull’orizzonte e con un filtro passa infrarosso: questo è l’unico metodo per ottenere immagini in alta risoluzione di questo elusivo pianeta.

Non solo pianeti, a dire la verità.

Un filtro passa infrarosso permette anche di spingerci verso un campo entusiasmante della fotografia astronomica del cielo profondo. A queste lunghezze d’onda, infatti, molti oggetti, in particolare le nebulose a emissione, cambiano aspetto: le polveri, presenti in grande quantità, diventano quasi trasparenti e nelle fotografie compariranno decine, centinaia di piccole stelle che alla lunghezza d’onda del visibile non saranno mai visibili.

Ci sono vaste zone di cielo in cui l’assorbimento causato dalle polveri presenti nella nostra Galassia oscura tutto quello che c’è dietro, tra cui altre galassie. È proprio alla lunghezza d’onda dell’infrarosso che il compianto Professore Paolo Maffei scoprì due galassie nella costellazione di Cassiopea, tanto vicine quanto invisibili normalmente a causa del forte assorbimento della Via Lattea. Alle lunghezze d’onda infrarosse le galassie Maffei diventano tra gli oggetti extragalattici più brillanti del cielo e possono essere fotografate anche con modesti strumenti da 70-80 mm di diametro. Possiamo quindi dire che un filtro infrarosso è un potente fendinebbia cosmico, che consente di vedere anche oltre l’impenetrabile cortina di polveri che permea gran parte del cielo, soprattutto nei pressi del disco galattico.

Maffei 1, a sinistra, e Maffei 2, a destra, sono galassie impossibili da notare alle lunghezze d’onda visibili, ma nell’infrarosso appaiono magicamente dalle dense polveri della Via Lattea.

Maffei 1, a sinistra, e Maffei 2, a destra, sono galassie impossibili da notare alle lunghezze d’onda visibili, ma nell’infrarosso appaiono magicamente dalle dense polveri della Via Lattea.

Se ci piace sperimentare e abbiamo a disposizione un telescopio da almeno 20 centimetri, possiamo acquistare, oltre al passa-infrarosso da 680-700 nm, anche un filtro più “spinto” da 800 o addirittura 900 nm. A queste lunghezze d’onda il cielo diurno diventa così scuro che è persino possibile fotografare al telescopio tutte le stelle che vedremmo di notte a occhio nudo, i satelliti di Giove e persino qualche brillante cometa che si avvicina molto alla nostra stella e che in condizioni normali non sarebbe mai visibile.

Incredibile come l’astronomia, anche amatoriale, possa sorprendere, vero? E pensare che tutto dipende dalla nostra voglia di esplorare e provare. Avete altre idee per usare con profitto un filtro passa infrarosso?

Giove e i suoi satelliti, di giorno, grazie all’uso di un filtro passa infrarosso molto spinto, addirittura da 1000 nm (1 micron). Non serve spingere la banda così in là: risultati del genere si possono ottenere anche con filtri da 700-800 nm.

Giove e i suoi satelliti, di giorno, grazie all’uso di un filtro passa infrarosso molto spinto, addirittura da 1000 nm (1 micron). Non serve spingere la banda così in là: risultati del genere si possono ottenere anche con filtri da 700-800 nm.

 

Incredibile ma vero: un filtro passa infrarosso diminuisce così tanto la luminosità del fondo cielo da rendere visibili persino brillanti comete a pochi gradi dal Sole. In questo caso stiamo osservando la cometa McNaught del 2007.

Incredibile ma vero: un filtro passa infrarosso diminuisce così tanto la luminosità del fondo cielo da rendere visibili persino brillanti comete a pochi gradi dal Sole. In questo caso stiamo osservando la cometa McNaught del 2007.