Ancora sulla spettroscopia: storia di una supernova tipo IIP

7

Ed eccoci nuovamente a parlare di spettroscopia e di ricerca scientifica amatoriale. Con un piccolo corollario, divenuto ormai un leitmotiv di questo blog: ovvero che anche con strumentazioni non fantascientifiche si possono ottenere davvero dei grandi risultati.

Come forse ricorderete da un precedente articolo, un bravissimo astrofilo, grande amico di TS Italia/Tecnosky, Claudio Balcon, ci ha già mostrato come ci si possa avvicinare all’affascinante mondo degli spettri senza dover per forza possedere strumentazioni con diametro esprimibile in metri. Stavolta, spingiamo ulteriormente oltre il limite.

Il nostro Claudio, infatti, ci ha dimostrato come si possa operare ad un livello davvero degno di un ricercatore professionista anche dal cortile di casa; naturalmente, come sempre, a patto che guidarci sia l’immensità di una passione che non conosce “se” né “ma”, rigorosamente accompagnata da una preparazione scientifica di base davvero molto molto solida, mirata ed evoluta.

E su questo, non si insiste mai abbastanza.

Appoggiare l’occhio ad un telescopio è osservare da vicino la più grande opera d’arte che esista. L’assoluta bellezza che la connota, come per ogni opera d’arte, può certo essere ben visibile e accessibile a tutti. E di questo non si può che rallegrarsi! Tuttavia, per essere davvero compresa, indigata, interiorizzata ed elaborata a fondo, è necessario ben altro che il mero dono della vista, per quanto acuta essa sia: occorre una solidissima preparazione, pratica e teorica, una conoscenza approfondita dell’opera indagata e del suo contesto, nonché del lavoro di tutti coloro i quali, prima di noi, a tale opera si sono approcciati. È quindi un lavoro di vero, genuino amore per la cultura. Cultura con la C maiuscola. Anche se ancora qualcuno ama distinguere la cultura dalla scienza; onorando la prima, mentre il mondo progredisce solo a contatto con la seconda…

Nuovamente un grazie a Claudio per il suo prezioso contributo: oltre al valore dei risultati conseguiti, spero possa essere di ispirazione per tanti.

Prima di lasciare spazio alle parole dell’autore, desidero ancora solo, in questa sede, mostrarvi la strumentazione utilizzata. Altro che Cerro Paranal….

Buona lettura a tutti!

LUCA ZANCHETTA – TELESKOP SERVICE ITALIA

 

setup-spettroscopia

 

 

 


 

 

Storia di una supernova tipo IIP

0

Le stelle, quella distesa di puntini luminosi che si vedono nel cielo nelle notti serene, sono dei reattori a fusione nucleare estremamente semplici ed affidabili che non richiedono manutenzione periodica e funzionano ininterrottamente anche per miliardi di anni.

Ogni stella nasce con un processo del tutto simile alle altre. Una nube molecolare nello spazio interstellare può trovarsi nella condizione in cui la forza di gravità inizia ad addensarne una parte. La forza di gravità porta all’avvicinamento delle molecole che compongono la nube che, in questo modo, ridurrà il suo volume aumentando pressione e temperatura.

 

1

Figura 1

Nella nebulosa Aquila, illuminata dall’annesso ammasso stellare, ci sono zone che si stanno addensando e che probabilmente in futuro daranno vita a nuove stelle. Molte stelle dell’ammasso sono delle supergiganti blu che risplendono solamente da qualche milione di anni.

 

 

Il processo di contrazione della nube continuerà finché la pressione non sarà in grado di controbilanciare la forza di gravità. Al termine di ciò si avrà una nube densa e calda.
Da questo punto in poi l’evoluzione della nube è legata alla massa e alla tipologia degli elementi che la compongono.

L’elemento prevalente nelle nubi interstellari è l’idrogeno. Sono presenti anche elementi più pesanti e la loro concentrazione e varietà è strettamente dipendente dalle modalità di formazione della nube.

 

2

Figura 2

La nebulosa M42 fa parte di una estesa zona HII sede di una elevata formazione stellare. Lo spettro a bassa risoluzione si riferisce ad una zona della nebulosa prossima alle stelle del trapezio. L’esplosione di una supernove può indurre delle instabilità nella nebulosa tali da iniziare l’addensamento dei gas che porteranno alla nascita di altre stelle.

 

 

3

Figura 3

La famosa nebulosa di Orione, è composta da una miscela di elementi alcuni dei quali sono stati sintetizzati nel nucleo di stelle di grande massa, progenitrici di supernove.

 

 

Se la massa della nube è superiore a circa un decimo della massa del Sole, preso per comodità come unità di misura, la temperatura e la pressione presenti nel nucleo sono sufficienti ad innescare reazioni di fusione nucleare: è nata una stella.
L’energia prodotta dalla fusione mantiene temperatura e pressione nel nucleo tali da controbilanciare la forza di gravità.
Più massiccia è una stella e maggiore è l’energia che deve produrre per sostenere il proprio peso. Per esempio la massa di Vega è un paio di volte quella solare, ma ha una luminosità assoluta di circa quaranta volte superiore; la massa della stella P Cygni è di oltre cinquanta volte quella solare e ha una luminosità di circa mezzo milione di volte superiore. Di conseguenza: più una stella è massiccia e minore sarà il suo tempo di vita rispetto ad una di massa inferiore, in quanto brucia il combustibile molto più velocemente di quanto non sia il rapporto delle loro masse.

Il 14 maggio 2017, Patrick Wiggins aveva segnalato che nella galassia NGC 6946 la fornace a fusione nel nucleo di un’anonima stella dalla massa di oltre dieci masse solari, aveva smesso di funzionare. Per essere corretti era stata segnalata la conseguenza di ciò: l’esplosione della supernova 2017eaw.
Una stella di tale massa trascorre una parte significativa della sua vita convertendo nel proprio nucleo l’idrogeno in elio. Quando l’idrogeno nel nucleo inizia a scarseggiare anche l’energia prodotta diminuisce così da non riuscire più a contrastare la forza di gravità. Questo comporta una ulteriore compressione del nucleo, aumentandone la temperature fino al punto in cui ha inizio la fusione dell’elio. Questo processo continua con gli elementi via via più pesanti fino ad arrivare al ferro, la cui fusione non è esotermica.

4b 4

4cFigura 4

Una supernova 2017eaw è del tipo IIP caratterizzata dall’avere nei primi tre mesi dall’esplosione una luminosità che cambia poco per poi decadere velocemente. Il tasso di variazione giornaliera della magnitudine (M), sulla base dei rilievi effettuati durante il “Plateau”, risulta essere:
M/giorno = (M(23ago)-M(21mag)) / (23ago-21mag) = 0.77M / 94giorni = 0.008
Valore allineato con quanto rilevato per supernove dello stesso tipo.

 

 

A questo punto la forza di gravità prende il sopravvento ed inizia il collasso del nucleo della stella. Se la massa complessiva in gioco è superiore a otto masse solari nemmeno la pressione degli elettroni degeneri riesce a controbilanciare la forza di gravità ed il nucleo continua a collassare su se stesso. Le leggi della termodinamica lasciano il posto a quelle dalla meccanica quantistica.
E’ affascinate pensare che i due strumenti matematici che l’uomo ha creato e che approssimano al meglio le nostre conoscenze dell’universo, la meccanica quantistica e la meccanica relativistica, in questo frangente si trovino strettamente legate per spiegare uno dei fenomeni più estremi che riusciamo a concepire.
La contrazione del nucleo, sotto la forza di gravità, costringe gli elettroni ad unirsi ai protoni che, trasformandosi in neutroni, rilasciano neutrini.
La gravità continua nella sua morsa a far precipitare materia sul nucleo finché la pressione degenere dei neutroni non arresta istantaneamente la caduta. A questo punto un immenso colpo d’ariete, simile a quello che accade quando si chiude repentinamente un rubinetto dell’acqua, provoca un’enorme onda d’urto che fa letteralmente esplodere tutto ciò che non è concentrato nel nucleo. La quantità di energia in gioco in questo frangente è paragonabile all’energia emessa da una intera galassia.
Ciò che rimane sono:
– una stella di neutroni caratterizzata da una massa paragonabile a quella del sole, ma dal diametro di pochi chilometri. Essa normalmente si torva in rapidissima rotazione per la conservazione del momento angolare.
– una nube di gas in veloce espansione, composta da idrogeno, elio ed altri elementi più pesanti.

 

5

Figura 5

Lo spettro della supernova 2017eaw, visibile i nero nel grafico, è stato ripreso il giorno 8 giugno 2017 con una esposizione di quindici minuti.
Il risultato ottenuto dopo aver rimosso il fondo del cielo, calibrato lo spettro in dispersione, compensate la risposta strumentale e l’estinzione atmosferica, è stato caricato su GELATO per ottenere la classificazione della supernova.
Per poter elaborare in modo corretto lo spettro è stato necessario introdurre una stima complessiva dell’estinzione della galassia ospite NGC6946, dell’estinzione intergalattica e della via Lattea che nel caso specifico è B-V= 0,2.
Dal confronto con una supernova presente nel database di GELATO, oltre alla conferma che si trattava di una supernova IIP, è stato stimato in 24,6 giorni il tempo trascorso dall’esplosione, che corrisponde con il giorno della scoperta.

 

 

Qualora la massa della stella di neutroni fosse superiore a circa una volta e mezza quella del sole, neppure i neutroni degeneri riuscirebbero a contrastare la forza di gravità e la contrazione del nucleo procederebbe creando un buco nero.

La supernova 2017eaw, oggetto della presente analisi, è classificata come tipo IIP perché, oltre alle righe di emissione dell’idrogeno, ha una luminosità quasi costante per un periodo di circa tre mesi dall’esplosione. Questo periodo viene chiamato in gergo “Plateau” che dà il nome al tipo di supernova (IIP). Le supernove di tipo II differiscono dalle tipo I per la presenza delle righe di emissione dell’idrogeno rilevabili tramite la spettrografia ottica.

Un’altra caratteristica di questo tipo di supernova, identificabile nello spettro, è la presenza contemporanea di righe di emissione e di assorbimento: particolarmente evidente è la riga Hα.

 

6

Figura 6

La simultanea presenza di righe di emissione (A) e di assorbimento (B) appartenenti allo stesso elemento origina il profilo detto “P Cygni” (C). Questo profilo è spiegabile come somma di due effetti:
1. il gas in espansione ha prevalentemente una emissione di origine non termica. Ciò che l’osservatore riceve è una banda centrata nella riga in quiete.
2. fra la parte più interna caratterizzata da una forte emissione nel continuo di origine termica e l’osservatore sono interposti i gas che si muovono nella sessa direzione della radiazione e ne assorbono alcune frequenze.

 

 

E’ interessante notare che con il passare del tempo, malgrado la luminosità cambi pochissimo durante la fase di plateau, lo spettro si modifica in modo considerevole.
Infatti si può notare che il massimo dell’emissione nel continuo dello spettro si sposta dal blu al rosso come conseguenza del raffreddamento dei gas in espansione.

 

7

Figura 7

Raccolta degli spettri della SN ripresi fra i mesi di maggio e settembre 2017 dallo scrivente. Ad ogni curva è stata aggiunta una costate in ordinata in modo da poterle sovrapporre in un singolo grafico.
Analizzando l’Hα degli spettri ottenuti si ricava che la velocità di espansione dei gas è cambiata approssimativamente da 13.000km/s a 6.000km/s in un periodo di quattro mesi. Questa variazione di velocità è data dalla progressiva rarefazione del guscio esterno in espansione, che permette così di vedere gli strati più interni. Il redshift della galassia ospite z=0.000133, corrispondente a circa 40km/s, è del tutto trascurabile vista la bassa risoluzione dello spettrografo impiegato.

 

 

L’evoluzione temporale di questa supernova, confrontandola con altre IIP studiate in passato, non presenta particolari anomalie confermando e consolidando i modelli teorici che le descrivono.

Per ottenere i dati e le immagini sopra proposte e descritte è stata utilizzata una strumentazione comprendente: un telescopio Newton 200/1000 mm ed uno spettrografo auto costruito.

 

8

Figura 8

Lo spettrografo è stato progettato e realizzato per essere leggero, robusto e facilmente utilizzabile anche in inverno con clima rigido. Il peso dello spettrografo, inclusa la camera CCD, è inferiore a 900 grammi.
La risoluzione λ/Δλ è normalmente compresa fra 70 e 200 ed è dipendente dal seeing, dalla messa a fuoco e dagli errori di guida.

 

 

9

Figura 9

Foto eseguita durante l’assemblaggio dell’attrezzatura nel giardino di casa, seguirà una lunga serata di riprese.

 

 

Foto, disegni e grafici sono stati realizzati dallo scrivente ad esclusione del grafico stampato da GELATO, http://gelato.tng.iac.es

 

 

Bibliografia:

a ) https://ned.ipac.caltech.edu/level5/March03/Filippenko/paper.pdf
b ) http://dipastro.pd.astro.it/chiosi/Lezioni/LAUREA_TRIENNALE/ASTROFISICA_II_MOD_B/LIBRO_NEW.pdf
c ) http://www.oa-teramo.inaf.it/osservatorio/personale/piersanti/lezioni_SNe.pdf

Leave a Comment

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

*