Campionamento e focale equivalente nella fotografia astronomica

Nelle osservazioni visuali le immagini vengono ingrandite attraverso gli oculari. Nella fotografia astronomica non ha più senso parlare di ingrandimento, perché al posto dell’occhio si inserisce un sensore digitale senza obiettivo e l’immagine, a rigor di logica, non viene ingrandita. In questi casi si parla di scala dell’immagine o campionamento, le grandezze che determinano “l’ingrandimento” delle immagini digitali.

Il campionamento, o scala dell’immagine, rappresenta la dimensione angolare di cielo che riesce a riprendere un singolo pixel del sensore. Quindi, questo determina anche il più piccolo dettaglio che è possibile, in teoria, risolvere. Una scala dell’immagine di 2”/pix (secondi d’arco su pixel) indica che ogni pixel inquadra una porzione di cielo con lato di 2”. Poiché i pixel sono i punti che formeranno l’immagine digitale, tutto quello che ha dimensioni inferiori a 2” non sarà mai risolto dal sensore. Questo prescinde dalla turbolenza atmosferica e da diametro dello strumento e rappresenta una specie di potenziale. È infatti certo che un’ipotetica scala dell’immagine di 40”/pixel non risolverà mai delle strutture di galassie o nebulose inferiori a questo valore. D’altra parte non è detto, anzi, non è proprio possibile dai nostri cieli, che un campionamento di 0,5”/pixel riesca a mostrarci dettagli di questa dimensione angolare perché saranno rovinati dalla turbolenza atmosferica, anche se usassimo un telescopio in grado di mostrarceli. Il campionamento, quindi, non determina direttamente la risoluzione dell’immagine ma ci permette di capire parametri fondamentali come il campo di ripresa che si ha con una certa accoppiata telescopio – sensore, quindi dà indicazioni su quali soggetti possiamo riprendere al meglio e se saremo limitati o meno dalla turbolenza atmosferica.

Calcolare il campionamento di un’immagine è facile utilizzando la seguente formula:

C = (Dp /F) x 206265,

dove C = campionamento (in secondi d’arco su pixel) , Dp = dimensioni dei pixel del sensore utilizzato e F = focale del telescopio. Dp e F devono avere le stesse unità di misura; 206265 è il fattore di conversione tra radianti e secondi d’arco. Di solito le dimensioni dei pixel sono espresse in micron, mentre quelle della focale in millimetri. Niente paura: un micron corrisponde a 0,001 millimetri.

 

Campionamento ideale nelle fotografie a lunga esposizione

Un principio, detto criterio di Nyquist, applicato al campo ottico afferma che per sfruttare una determinata risoluzione occorre che il più piccolo dettaglio visibile cada almeno su due pixel adiacenti. Se consideriamo che nel mondo reale è meglio se il più piccolo dettaglio risolvibile cada su almeno 3 pixel, possiamo giungere a importanti conclusioni su quale possa essere il massimo campionamento efficace nella fotografia a lunga esposizione. Se la risoluzione massima a cui possiamo ambire è determinata dalla turbolenza media ed è intorno ai 2,5-3”, a prescindere dal diametro del telescopio, significa che le scale dell’immagine più basse che possiamo usare prima di avere l’effetto delle stelle a pallone e dettagli sempre sfocati sono dell’ordine di 0,8”-1”/pixel. Nelle condizioni medie, di fatto non conviene quasi mai lavorare con scale più piccole di 1”-1,5”/pixel.

L’effetto più grave di quello che si chiama sottocampionamento, cioè lavorare con scale più grandi, è mostrare stelle così piccole che potrebbero diventare quadrate, perché questa è la forma dei pixel, ma d’altra parte avremo sempre dettagli degli oggetti estesi ben definiti e contrastati, con una profondità in termini di magnitudine ancora ottima. L’effetto di un sovracampionamento, cioè di una scala dell’immagine più bassa di quella limite, è quello di restituire stelle sempre molto grandi e dettagli degli oggetti estesi sfocati e indistinti. Come se non bastasse, un sovracampionamento produce anche una perdita, a volte notevole, di profondità perché la luce si espande su più pixel invece di venir concentrata in una piccola area. Il mio consiglio, quindi, è di non esagerare con la scala dell’immagine e di preferire immagini “meno ingrandite” ma più definite a improbabili zoom che mostrerebbero nient’altro che un campo confuso e molto rumoroso. Questo ragionamento vale sia per le riprese telescopiche, in cui si dà per scontato che il seeing sia il limite alla risoluzione rispetto al diametro dello strumento, che per le fotografie attraverso obiettivi e teleobiettivi, in cui il limite deriva dal potere risolutivo dell’ottica.

Conoscendo il campionamento e il numero di pixel dei lati del sensore, possiamo subito comprendere quanto sarà grande il nostro campo di ripresa e capiremo se sarà possibile riprendere al meglio un’estesa nebulosa o una debole galassia.

Districandosi in questa specie di giungla, potremo costruire un setup più specifico per la tipologia di oggetti che più ci piace. A livello generale e personale, finché useremo delle semplici reflex digitali non vale la pena farsi troppi conti perché tanto per queste non c’è molta scelta a livello di dimensioni dei pixel e del formato del sensore. Quando invece parliamo di CCD (o CMOS) astronomici, che dobbiamo scegliere con molta attenzione, il campionamento che otterremo con il nostro setup rappresenta il punto più importante per la scelta. Sarà infatti inutile, e frustrante, usare un sensore con pixel di 5 micron su un telescopio Schmidt-Cassegrain da 1,5-2 metri di focale, che ci darà un campionamento di 0,70-0,50”/pix e potrebbe venir sfruttato in pieno solo dal deserto di Atacama. Nelle nostre località otterremo sempre stelle a “pallone” e oggetti diffusi molto deboli e rumorosi, tanto da richiedere ore e ore di integrazione per mostrare dettagli interessanti. Un risultato simile si sarebbe ottenuto con una scala dell’immagine anche tre volte superiore e un tempo di integrazione totale dalle 4 alle 9 volte inferiore.

Avere pixel molto piccoli comporta anche una perdita di sensibilità e dinamica, perché un pixel più piccolo raccoglie meno luce e può contenere molti meno elettroni di uno più grande, con la conseguenza che il range dinamico del sensore si può ridurre anche di 5 volte tra pixel da 5,6 micron e da 9 micron. Poiché un sensore astronomico è qualcosa che dovrebbe durare per molti anni e le serate buone si possono contare in un anno sulle dita di due mani, è meglio sceglierne uno che si accoppi in modo perfetto al nostro telescopio. Se ci piacciono primi piani di galassie è meglio ingrandire le immagini in elaborazione che lavorare a una scala piccolissima.

 

Campionamento ideale nell’imaging in alta risoluzione

Quando parliamo di fotografia in alta risoluzione le cose cambiano drasticamente perché, grazie a pose molto brevi e un enorme numero di frame catturati, possiamo sperare di abbattere il muro eretto dalla turbolenza atmosferica media e spingerci verso la risoluzione teorica dello strumento, fino a un limite di circa 0,3” nelle zone più favorevoli e nelle migliori serate. Quando il seeing collabora, quindi, possiamo impostare la scala dell’immagine sui limiti di risoluzione teorica dello strumento che stiamo utilizzando. Una buona relazione per determinare la risoluzione alle lunghezze d’onda visibili è quella di Dawes:

PR = 120/D

Dove PR = potere risolutivo, in secondi d’arco, e D = diametro del telescopio espresso in millimetri.

Come già detto, affinché il sensore sia in grado di vedere questa risoluzione occorre che questa cada su 3-4 pixel: né molto più, né molto meno. In queste circostanze, allora, il nostro obiettivo sarà quello di lavorare a cavallo del campionamento ottimale, che può essere espresso dalla semplice formula:

Cott= 37/D

Dove D = diametro del telescopio espresso in millimetri e Cott = campionamento ottimale, espresso in secondi d’arco su pixel. Come possiamo vedere dal confronto con la formula di Dawes, cambia di fatto solo il coefficiente numerico, che è inferiore di poco più di tre volte, proprio come abbiamo detto con le parole. Il valore ottenuto, come quello della formula di Dawes, rappresenta un punto di riferimento alle lunghezze d’onda visibili e non un numero da rispettare in modo rigoroso. Scostamenti del 10-20% sono ancora accettabili e, anzi, incoraggiati, poiché ogni sensore, telescopio e soggetto possono preferire valori leggermente diversi dalla semplice teoria con cui abbiamo ottenuto questi.

I valori che raggiungiamo sono tutti piuttosto piccoli ed ecco spiegato il motivo per cui nell’imaging planetario è preferibile usare sensori con pixel di dimensioni ridotte, tra i 3 e i 7 micron al massimo: l’opposto di quanto si preferisce fare nella fotografia a lunga esposizione.

Nonostante questo, i rapporti focale tipici si aggirano tra f20-22 (per pixel da 3,7 micron) e f 30-35 (per pixel da 5,6 micron) e si rende necessario inserire oculari o lenti di Barlow per aumentare la focale nativa del telescopio. Invece di fare complicati calcoli sul rapporto focale raggiunto con un certo oculare o Barlow, per capire a quale campionamento reale si sta operando il modo migliore è fare dei test riprendendo un pianeta, ad esempio Giove. Misurando l’estensione in pixel e confrontandola con il diametro apparente che si può leggere da ogni software di simulazione del cielo, possiamo trovare il campionamento reale della ripresa applicando questa formula:

Ccalc = dang/dlin

Dove dang  sono le dimensioni angolari (in secondi d’arco) e dlin  il diametro misurato dell’immagine, espresso in pixel. Il campionamento restituito sarà in secondi d’arco su pixel. A questo punto la focale con cui è stata fatta la ripresa sarà:

Feq = (Dp/ C) x 206265

Dove Dp  sono le dimensioni dei pixel del sensore, espresse in millimetri e C il campionamento (calcolato sull’immagine o stimato, non cambia). La focale restituita sarà in millimetri. Il rapporto focale sarà dato dalla semplice relazione Feq / D, con D = diametro del telescopio, in millimetri. Queste formule sono valide in generale, quindi anche per le riprese del profondo cielo.

Anche in questa circostanza, avere a disposizione miliardi di pixel è dannoso, e molto più rispetto alla fotografia del profondo cielo (in cui il danno principale è l’esigenza di avere telescopi dall’enorme capo corretto, quindi molto costosi). Poiché il campionamento ideale è fissato e i pianeti hanno dimensioni angolari ridotte, per ottenere ottime immagini non potremo avere, ad esempio, Giove esteso per 4 milioni di pixel. Il sovracampionamento nell’imaging in alta risoluzione è distruttivo e sarebbe sempre da evitare, molto più che nella fotografia a lunga esposizione nella quale, almeno, possiamo sperare di allungare il tempo di integrazione per sopperire in parte al danno che abbiamo fatto.

Nella fotografia in alta risoluzione “ingrandire” troppo l’immagine ci allontanerà sempre da un risultato ottimo. Anche se all’inizio potrebbe sembrare che ottenere delle “pizze” ingrandite a dismisura possa essere entusiasmante, in barba ai teorici del campionamento ideale, stiamo osservando un risultato che è sempre peggiore rispetto a quanto avremmo ottenuto con “l’ingrandimento” giusto. Non è un’opinione, è un fatto e anche se non piace non si può cambiare.

Se i pianeti saranno estesi al massimo qualche centinaio di pixel (se abbiamo strumenti oltre i 20 cm), che ce ne facciamo di un sensore che ne possiede diversi milioni? Niente, a meno che non ci vogliamo dedicare espressamente a panorami lunari, ma anche in queste circostanze ci sono comunque dei limiti. Usare sensori con più di 2-3 milioni di pixel per fare imaging in alta risoluzione non è una buona soluzione perché si riduce di molto il framerate, cioè la frequenza con cui si acquisiscono le immagini, che in alta risoluzione è fondamentale avere almeno a 15-20 frame al secondo (fps).

Una libreria di miei fit grezzi per fare pratica

L’astronomia è condivisione, sia se la facciamo per hobby che per professione. La condivisione diventa necessaria quando parliamo di dati, di fotografie e di tutto ciò che può essere utile alla scienza o nell’apprendere nozioni in un campo nuovo. Se nessuno condividesse le proprie esperienze sarebbero molto pochi gli appassionati del cielo e ancora meno i progressi fatti dalla scienza negli ultimi secoli.

Spesso mi hanno chiesto quale fosse il segreto delle mie immagini, quale magica pozione utilizzassi per elaborarle. Molti sono infatti convinti che la magia di una foto la si crei nella fase di elaborazione, dove con qualche software potente come Photoshop potremo estrarre dettagli sorprendenti di una nebulosa, magari partendo da una sfocata fotografia a un segnale stradale. Certo, tutto è possibile, anche questo, ma credo che sarebbe bello partire da un’immagine reale e fare tutte quelle operazioni che non alterano il segnale catturato. L’obiettivo di un’elaborazione, sia pur estetica, di una fotografia astronomia dovrebbe essere quello di mostrare al meglio tutto il segnale catturato, senza cambiarlo, senza interpretare la realtà che resta quella che il nostro sensore digitale ha catturato. La tentazione di passare dalla fase di elaborazione a quella di fotoritocco può essere grande, soprattutto quando la nostra voglia di ottenere buoni risultati si trasforma in frustrazione vedendo in giro capolavori in apparenza irraggiungibili.

La fase fondamentale della realizzazione di un’ottima immagine astronomica si affronta sempre durante lo scatto, sul campo, spesso al freddo e all’umido. E’ una fase che spesso inizia prima dello scendere del buio, quando dobbiamo trovare il luogo adatto, privo di luci e di umidità, allineare il cercatore, collimare lo strumento (se serve), stazionare in modo perfetto la montatura verso il polo, scegliere il soggetto migliore per la serata e la strumentazione, che deve avere certe caratteristiche, impostare la guida, curare l’inquadratura, la messa a fuoco e poi sperare che per almeno 3-4 ore vada tutto bene, perché quando tutto funziona ed è stato ottimizzato l’unico segreto è questo: esporre, esporre ed esporre per 3-4-5 e più ore. Solo in rarissimi casi si possono ottenere splendide fotografie con un tempo di integrazione totale inferiore a un’ora e sempre la potenziale bellezza di uno scatto aumenta all’incrementare del tempo che gli dedichiamo, non di fronte al computer a elaborarlo ma sotto il cielo, a raccogliere fotoni che hanno viaggiato per migliaia o milioni di anni luce.

Proprio per dare un punto di riferimento a chi cerca di addentrarsi nel mondo della fotografia a lunga esposizione del profondo cielo o per tutti coloro che vogliono capire come migliorare i propri risultati, ho messo a disposizione una serie di fit scattati al cielo coon differenti strumenti e sensori. Per questioni di spazio non ho potuto mettere a disposizione i file singoli con i frame di calibrazione ma solo i file grezzi calibrati e sommati. Potete utilizzarli per fare pratica, divertirvi con gli amici, provare a scovare (e ce ne sono molti) i difetti. Potete pubblicarli per uso non commerciale citando sempre l’autore. Non dovete mai, in nessun caso, eliminare i riferimenti per l’autore o, peggio, spacciarli per vostri perché se vi becco sono cavoli amari 🙂 .

Alcune immagini non le ho elaborate neanche io ancora, per mancanza di tempo, quindi non ho la minima idea di come potranno venire. Molte altre, invece, le trovate elaborate nella mia gallaery su astrobin: http://www.astrobin.com/users/Daniele.Gasparri/collections/253/

Ecco l’elenco completo da cui poter scaricare le immagini. I file sono compressi in formato zip. All’interno troverete il file fit. Ho scelto questo formato, che Photoshop non legge a meno di scaricare il programma gratuito Fits Liberator, perché è lo standard internazionale per tutti i dati astronomici. Tutti i software appositi lo leggono, compreso Deep Sky Stacker, Nebulosity, Iris, Registax, MaxIm DL, PixInsight, AstroArt…

Mettete questo post tra i preferiti perché con il tempo verrà aggiornato con nuovi scatti, compresi quelli in alta risoluzione:

Come fotografare in modo spettacolare i colori delle stelle

Fare foto al telescopio, inseguendo nebulose, galassie e ammassi stellari è il sogno proibito di molti appassionati di astronomia, che spesso si infrange di fronte alle difficoltà tecniche, strumentali ed economiche richieste. Non si deve avere fretta, è un percorso che va fatto con pazienza e determinazione: questo è quanto viene detto sempre. Sì, d’accordo, ma da qualche parte dovremo pur cominciare, no? Magari abbiamo a disposizione una reflex digitale e un piccolo telescopio e ci piacerebbe iniziare a fare qualche semplice scatto, giusto per provare.

Di solito si comincia a fare foto alla Luna, poi a qualche pianeta brillante. Per andare oltre e fare le lunghe esposizioni richieste per immortalare gli oggetti del cielo profondo serve un salto di qualità non indifferente: una montatura equatoriale molto robusta, uno strumento buono dal punto di vista ottico e meccanico, un sistema di controllo dell’inseguimento, detto autoguida. Il fiume da guadare è piuttosto largo e profondo, soprattutto se non disponiamo di una montatura equatoriale all’altezza.

Prima di decidere se accontentarsi di quello che si ha, o svuotare il portafogli e ipotecare il futuro con il proprio partner, che potrebbe non apprezzare la vostra decisione, possiamo dedicarci a un tipo di fotografia astronomica attraverso il telescopio che non richiede costosi strumenti, né complesse montature. Anzi, a dire la verità non richiede neanche di inseguire le stelle!

La tecnica che sto per descrivere è stata portata alla ribalta negli anni ’80 e ’90 da un astronomo dell’Anglo Australian Observatory, che i più esperti forse già avranno sentito nominare: David Malin. Munito di una semplice attrezzatura e un po’ di inventiva si era chiesto, grazie al suo background scientifico: è possibile riprendere il colore delle stelle in modo più efficace rispetto a quanto accade in una normale fotografia? Non è infatti difficile notare come molte delle foto del profondo cielo mostrino stelle tendenzialmente bianche. Solo con una grossa dose di manipolazione software i più bravi astrofotografi riescono a tirare fuori qualche tonalità, ma non è una strada molto agevole, né spettacolare.

Partiamo allora dal principio alla base di questa nostra nuova esperienza di fotografia astronomica: le stelle si mostrano di diversi colori. A parte gli astri di classe A, come Vega, che appaiono completamente bianchi, tutti gli altri puntini sono colorati, anche se i nostri occhi faticano a notare la tonalità a causa della scarsa saturazione e della minore efficienza del nostro sistema visivo in condizioni di bassa illuminazione. Le fotocamere, però, non hanno questi problemi e per di più potremo aumentare la saturazione quanto vogliamo in fase di elaborazione per esasperare le differenze di colore delle stelle. Non si tratta di un mero esercizio di astrofotografia e di elaborazione: i colori delle stelle, reali, dipendono dalla loro temperatura superficiale. Possiamo quindi fare anche della scienza dall’esperienza che stiamo per fare, cosa che non guasta mai.

Quando fotografiamo una stella ben messa a fuoco dal telescopio la sua luce si concentra in pochissimi pixel che spesso diventano rapidamente saturi, se non in fase di acquisizione quando andiamo a regolare curve e livelli con qualche software. Da questa considerazione è nata l’idea geniale di Malin: per mostrare il colore delle stelle dobbiamo far espandere la loro luce su un’area maggiore, in modo che non si rischi di saturare i pixel. Il metodo migliore per fare questo prevede di sfocare leggermente l’immagine: semplice quanto efficace. Per dare un tocco estetico alla nostra futura foto, la tecnica di Malin considera un dettaglio geniale: la sfocatura progressiva, senza il moto di inseguimento delle stelle.

Ecco quindi quello che dobbiamo fare:

  • Colleghiamo la nostra reflex al telescopio. Se non sappiamo come fare, siamo nel posto migliore: contattate i tecnici di Teleskop Service Italia che vi consiglieranno gli accessori necessari (sono tutti economici). Il telescopio più adatto, al contrario di quelli usati per fare ottime foto al cielo, è un rifrattore, anche di piccolo diametro e non necessariamente apocromatico. In linea di principio, comunque, tutti gli strumenti vanno bene, compresi obiettivi e teleobiettivi fotografici;
  • Scegliamo un campo ricco di stelle brillanti. In queste serate autunnali le Pleiadi o il doppio ammasso del Perseo sono perfetti, se lavoriamo almeno a 400 mm di focale. Se abbiamo un campo molto largo perché usiamo un teleobiettivo, meglio andare verso la cintura di Orione;
  • Mettiamo a fuoco come se dovessimo scattare una perfetta foto astronomica, aiutandoci con la modalità live view;
  • Impostiamo sensibilità almeno a 400 ISO, modalità di scatto in formato RAW e posa Bulb. Meglio avere un telecomando per controllare l’esposizione della reflex senza doverla toccare. In mancanza di telecomando ci dobbiamo accontentare della posa massima consentita: 30 secondi, e dell’autoscatto;
  • Appena iniziamo lo scatto disattiviamo il moto di inseguimento siderale. Possiamo in ogni caso selezionare la modalità autoscatto, anche con il telecomando della reflex, e avere qualche secondo di tempo per disattivare il moto orario prima che inizi lo scatto. Si può anche provare a fare una variante interessante: 10 secondi di foto con messa a fuoco perfetta e moto orario acceso e poi il resto (sempre in uno scatto singolo) senza inseguimento e con la sfocatura progressiva che stiamo per vedere;
  • Toccando molto leggermente il focheggiatore, mentre la posa va avanti e le stelle si sposteranno, variamo in modo continuo e molto delicato la messa a fuoco, fino al termine dello scatto, compreso tra i 60 e i 120 secondi. Il fuoco non dovrebbe variare moltissimo, ma di quanto ruotare la manopola del focheggiatore lo capiremo dopo il primo tentativo. Ora osserviamo il risultato ed emozioniamoci, perché abbiamo fatto una foto sia artistica che scientifica, molto più didattica di tanti scatti fatti da astrofotografi esperti e purtroppo così pieni di elaborazione da aver perso quasi del tutto il contatto con la realtà.
Gli spettacolari colori delle Pleiadi, catturati con la tecnica descritta nel post attraverso un rifrattore da 106 mm e Canon 450D. Posa singola di circa 90 secondi.

Gli spettacolari colori delle Pleiadi, catturati con la tecnica descritta nel post attraverso un rifrattore da 106 mm e Canon 450D. Posa singola di circa 90 secondi.

 

Cosa accade in pratica quando applichiamo questa tecnica? La non compensazione del moto terrestre produce sul sensore le classiche tracce stellari. La sfocatura progressiva durante l’esposizione trasforma le tracce in tanti piccoli coni, la cui larghezza e lunghezza dipendono dal tempo di esposizione e dall’intensità della sfocatura. In questo modo la nostra immagine contiene molta più dinamica rispetto a una classica posa: le stelle più brillanti mostreranno il colore nella parte terminale del cono, quando la loro luce si sarà distribuita su un numero sufficientemente grande di pixel per evitare la saturazione. Le stelle più deboli avranno coni più brevi ma sempre colorati, soprattutto nella parte iniziale vicina al punto di fuoco.

La fase di elaborazione, spesso temuta e odiata, è semplicissima, anche se abbastanza importante. La saturazione dei colori delle stelle è per natura piuttosto contenuta. A questo però è facile porre rimedio con qualsiasi programma di elaborazione delle immagini. E’ infatti sufficiente aumentare la saturazione del colore di almeno il 50% per far emergere finalmente un campo pieno di evidenti sfumature e affascinanti contrasti. Non è necessario fare altro.

I colori delle stelle e l’estetica dell’immagine risultante dipendono dalla lunghezza e dalla larghezza dei coni stellari, quindi dalla focale di ripresa, dal tempo di esposizione, dall’intensità della sfocatura. Le variabili in gioco sembrano complicare la nostra ripresa, ma questa è una delle rare e piacevoli situazioni nelle quali la pratica è molto più semplice di qualsiasi spiegazione.

Qualcuno riconosce il campo inquadrato? La scala è la stessa della fotografia delle Pleiadi, solo che in questo caso ci sono molti più colori: è un vero spettacolo!

Qualcuno riconosce il campo inquadrato? La scala è la stessa della fotografia delle Pleiadi, solo che in questo caso ci sono molti più colori: è un vero spettacolo!

Il consiglio principale, quindi, è quello di fare esperienza e dare sfogo alla vostra fantasia. Sono sufficienti pochi minuti ed un paio di tentativi per trovare già il giusto compromesso che soddisfa il vostro gusto estetico. E, chissà, proprio come accade in altri ambiti della società, i nostri scatti creativi potrebbero riportare di moda questa tecnica, che molti nativi digitali, purtroppo, neanche conoscono. Eppure è utile, divertente e piuttosto artistica. A questo punto, allora, osservando i nostri capolavori un paio di domande sono obbligatorie: a quali temperature corrispondono i colori che stiamo osservando? Sono più calde le stelle rosse o blu? E di quanto? Scopriamolo da soli con enorme soddisfazione: è il bello dell’astronomia amatoriale!

Montare un filtro da 2″ davanti ad un obiettivo fotografico

Geoptik produce da tempo un interessante raccordo, che permette di montare filtri da 2″ su obiettivi con filetto da 58mm ( http://www.teleskop-express.it/adattatori-verso-2/1285-adattatore-filtri-2-geoptik.html ). Tenuto conto che la fotografia astronomica a grande campo è da diversi anni che sta attraendo nuovi astrofotografi, specie grazie all’interessamento anche dei fotografi paesaggisti in prevalenza, in tanti si pongono il problema nel caso dovessero montare un filtro per riprendere, ad esempio un halpha oppure un filtro LPR.

Nel caso si possieda una Canon in formato APS-C la soluzione è semplice, ci sono i filtri EOS-Clip della Astronomik, ma per chi possiede reflex di altre marche? Qualcosa sembra muoversi sul fronte Sony, grazie all’interessamento di Hutec, ma al momento chi ha una reflex al di fuori di Canon, purtroppo, non ha moltissime scelte. Una soluzione è quella di montare un filtro da 2″ davanti al nostro obiettivo, ma se non ha il filetto M58, ma più grande, come posso fare se volessi usare l’adattatore Geoptik?

Per fortuna Amazon ci viene incontro! Infatti basta prendere degli anelli Step Down, che costano davvero poco, un esempio: https://www.amazon.it/49mm-Anelli-Lenti-Adattatore-Filtri/dp/B008H2HUC4/ref=sr_1_3?ie=UTF8&qid=1478534130&sr=8-3&keywords=step+down+ring

In questo modo, spendendo meno di 10€, possiamo montare il nostro bel filtro e fare quello che vogliamo. Però la vignettatura introdotta, quanto mi inciderà e a che focali?

Bene, qui si sviluppa il nostro piccolo test. Ho montato la serie di anelli Step Down, fino al filetto M58 per poi montare l’adattatore Geoptik, su 2 obiettivi Canon in mio possesso e usati con una reflex Full Frame.

Attenzione!!!! I risultati sono stati ottenuti con una reflex full frame, quindi con un formato APS-C le tolleranze sono maggiori.

Qui sono stati montati gli anelli Step Down e l’adattatore Geoptim 30A193 su di un Canon 17-40L

img_9141

Ovviamente più la focale è bassa, più avremo l’effetto vignettatura, che a focali ultragrandandolari assume una rilevanza da..buco della serratura!

Qui a 17mm, immagine inutilizzabile

17-40_17mm

Qui invece a 40mm, l’immagine diventa usabile, tenuto conto della fisiologica vignettatura di ogni obiettivo

17-40_40mm

Con focali da 100 e 400mm ovviamente nessun problema:

100-400_100mm 100-400_200mm

Gli obiettivi usati hanno un diametro per i filtri da 77mm, bello grande, quindi più anelli dobbiamo mettere, più il nostro filtro si sposterà lontano dalla lente e…vignetteremo. Sicuramente la configurazione che ho usato è una delle peggiori possibili come tolleranze, diametro grande e sensore full frame.

In linea di massima si può dire che con reflex full frame ed obiettivi con diametro sui 77mm, la focale minima usabile parte da 30mm circa. Con sensore APS-C e obiettivi con diametro minore, ovviamente avremo MOLTA più tolleranza per operare a focali ultragrandangolari.

A mio avviso vale la pena provare, per neanche 10€ + adattatore Geoptik 30A193, provare a montare un filtro da 2″ sulla nostra reflex e tentare qualche bella ripresa. Ad esempio io proverò a riprendere in halpha, con una Sony A7s modificata e a focali dai 50mm in su, il complesso di nebulose in Orione con il suo anello di Barnard, vediamo cosa salterà fuori e se la vignettatura causerà problemi o meno, buone riprese a grande campo a tutti!

Cosa sono e come ottenere ottimi flat field

Chi si interessa di astronomia pratica e magari ha amici astrofotografi, avrà di certo sentito nominare i frame di calibrazione, in particolare i flat field. Chi ha iniziato a fotografare da poco avrà già individuato in queste due strane parole un nemico troppo grosso da sconfiggere, tanto che potrebbe pure aver deciso di voltarsi dall’altra parte e di far finta che non esita. Chi fotografa da più tempo, o chi si impegna nel campo della ricerca con mezzi amatoriali, ha capito come padroneggiarli, ma fatica ancora a reputarli tanto importanti da meritare di essere diffusi come se fossero il verbo supremo della fotografia a lunga posa degli oggetti celesti. In questo post capiremo cosa sono i flat field, perché sono importanti e come farli diventare le nostre migliori risorse per trasformare un’immagine astronomica in un potenziale capolavoro.

 

Cosa sono i flat field

I flat field sono delle speciali immagini di calibrazione che hanno l’unico compito di mappare le differenze di sensibilità dei pixel del CCD e le disomogeneità del piano focale. Tra queste rientrano difetti sempre presenti come la vignettatura, ovvero una caduta di luce ai bordi, ma anche polvere e sporcizia depositati sui filtri, sui correttori o sulla finestra del CCD stesso.

A parte la differente sensibilità dei pixel, tutti gli altri difetti da correggere dipendono in modo critico dal setup utilizzato, dall’orientazione della camera e dalla messa a fuoco. Basta variare anche di poco il punto di fuoco, ad esempio, per avere una diversa forma della polvere e della sporcizia sul campo ripreso; è sufficiente ruotare di qualche grado la camera per cambiare l’orientazione della vignettatura e dell’eventuale polvere e rendere quindi impossibile una correzione dell’immagine.

La prima regola, fondamentale, per i flat field è quindi la seguente: questi devono essere ripresi con lo stesso setup delle immagini che vogliamo correggere, con la medesima messa a fuoco e orientazione della camera. Al limite, se si fanno riprese RGB con ruota portafiltri e filtri parafocali, è ammesso fare i flat field, per ogni filtro, alla fine della sessione di ripresa, anche se sarebbe preferibile, soprattutto per lavori di precisione, fare flat field per ogni filtro prima di cambiarlo e passare a fare riprese con il successivo

 

I flat field servono davvero?

Per molto tempo, soprattutto a causa della relativa difficoltà nel fare corretti flat field, si è diffusa la versione astrofotografica della classica leggenda della volpe e dell’uva: fare dei buoni flat è difficile, quindi non sono poi così necessari. Basta saper usare Photoshop o PixInsight e tutto si risolve con dei bellissimi flat sintetici. Questa è una cosa orribile da dire e persino da pensare: toglietevi dalla testa di poter fare a meno dei flat field e di poterli creare con qualche programma di elaborazione. Nessun osservatorio professionale e nessun astrofotografo di alto livello fanno una cosa del genere e un motivo c’è. I flat field sono infatti fondamentali per ottenere immagini scientificamente accurate ma anche godibili dal punto di vista estetico, soprattutto per soggetti deboli. Chi non riesce ad apprezzarli, magari suggerendo di farli sintetici con qualche programma, non ha mai visto un buon flat field e il vero e proprio miracolo che può fare alle nostre immagini. Su questo punto, quindi, non si discute: sia che voi siate astrofotografi con ambizioni altissime o appassionati della domenica che scattano con un astroinseguitore e qualche malandato obiettivo fotografico ogni morte di Papa, i flat field sono l’unico vero strumento che può  trasformare ogni vostra foto in un potenziale capolavoro: non c’è elaborazione successiva che possa sostituirli.

Ecco allora la seconda regola: tutti coloro che fanno riprese del cielo profondo dovrebbero imparare a riprendere i flat field e usarli per correggere le proprie immagini. Per tutti si intende sia chi usa un telescopio che chi si accontenta di un obiettivo a grande campo.

 

I flat field eliminano tutti i gradienti di luce dovuti alla strumentazione usata. Non eliminano i gradienti presenti nel cielo ma cancellano polvere e vignettatura, e questa è un grandissimo aiuto per tutti i soggetti molto deboli.

I flat field eliminano tutti i gradienti di luce dovuti alla strumentazione usata. Non eliminano i gradienti presenti nel cielo ma cancellano polvere e vignettatura, e questa è un grandissimo aiuto per tutti i soggetti molto deboli. A sinistra un’immagine senza calibrazione con master flat field. A destra la stessa immagine calibrata: i dettagli sono molto più evidenti e il gradiente di luce con simmetria circolare è completamente sparito.

 

Un flat ti salva la vita: quando gli oggetti sono deboli, il campo pieno di polvere e il telescoio vignetta che è una bellezza, solo un buon flat field può salvare la nostra serata e mostrarci dettagli sull'oggetto catturato che non credevamo possibili. A inistra una situazione in apparenza compromessa. A destra la stessa immagine dopo la correzione con un buon flat field. Una trasformazione del genere non sarebbe  mai stata possibile a posteriori con nessun programma di elaborazione. Se pensate che una situazione del genere sia un'eccezione vi sbagliate. Anche se non ve ne accorgete, ogni immagine nasconde schifezze del genere che devono e possono essere corrette solo con un buon flat field.

Un flat ti salva la vita: quando gli oggetti sono deboli, il campo pieno di polvere e il telescoio vignetta che è una bellezza, solo un buon flat field può salvare la nostra serata e mostrarci dettagli sull’oggetto catturato che non credevamo possibili. A inistra una situazione in apparenza compromessa. A destra la stessa immagine dopo la correzione con un buon flat field. Una trasformazione del genere non sarebbe mai stata possibile a posteriori con nessun programma di elaborazione. Se pensate che una situazione del genere sia un’eccezione vi sbagliate. Anche se non ve ne accorgete, ogni immagine nasconde schifezze del genere che devono e possono essere corrette solo con un buon flat field.

 

Come fare un buon flat field

La nostra terza regola è semplice, ma richiederà diverse spiegazioni: un flat field è un’immagine di una sorgente uniformemente illuminata, priva di stelle, effettuata alla giusta esposizione, con il medesimo setup utilizzato per riprendere l’immagine che vogliamo correggere.

In questa frase si nascondono tutte le difficoltà nel riprendere un corretto flat field. Per non creare dispersione con parole superflue, vediamo le tappe fondamentali da seguire e i concetti da fissare bene in mente:

  • Un flat field è di fatto una particolare immagine di luce. E cosa abbiamo imparato dalla fotografia astronomica? Che in generale una buona foto è la media di diversi scatti che consentono di ridurre il rumore e che a questi scatti bisogna sottrarre il dark frame. Ecco allora la quarta regola: un buon flat field si ottiene dalla media di almeno una ventina di singoli scatti, tutti uguali, a cui poi sottraiamo il relativo master dark frame, ottenuto dalla mediana di almeno 5-7 scatti. In pratica bisogna trattare i flat field come se fossero una sessione (particolare) di fotografia astronomica. Al limite, soprattutto se usiamo una reflex, possiamo sostituire i dark frame con i bias frame: l’importante è che i singoli scatti di flat siano calibrati o con i dark o con i bias. Una volta eseguite queste operazioni possiamo mediare i flat calibrati, senza effettuare alcun allineamento, e si costruisce il nostro bellissimo master flat field. Molti software generano il master flat field in modo autoatico prima di calibrare i frame di luce, quindi di questa operazione possiamo non farci carico noi, a meno che non vogliamo avere il pieno controllo su quello che accade (e non è una cattiva idea questa!);
  • Il master flat field viene normalizzato al valore medio di ADU pari a 1 e poi diviso dall’immagine che vogliamo correggere. Questa operazione viene fatta dal software che si utilizza e noi non dobbiamo preoccuparcene più di tanto perché, se tutto è stato fatto nel modo giusto, l’immagine corretta presenterà un fondo cielo privo di vignettatura e di zone più chiare o scure dovute a polvere o sporcizia. Tutto molto semplice, vero? Abbiamo già finito, siamo tutti contenti… Non proprio.
A sinistra un singolo frame di flat field ben eseguito. A destra la media di 35 singoli scatti. Soffriamo già molto per far uscire un minimo di segnale dai soggetti astronomici con ore e ore di posa, non roviniamo tutto con dei flat non buoni: mediamo molti scatti per non aggiungere rumore.

A sinistra un singolo frame di flat field ben eseguito. A destra la media di 35 singoli scatti. Soffriamo già molto per far uscire un minimo di segnale dai soggetti astronomici con ore e ore di posa, non roviniamo tutto con dei flat non buoni: mediamo molti scatti per non aggiungere rumore.

Se siete stati infatti ben attenti, non vi ho detto come fare nella pratica un buon flat field: è questo il punto più delicato. Ecco allora qualche spunto per non dover diventare matti:

  • Flat box o generatori di flat field: sono una delle più grandi novità dell’astrofotografia dopo la maschera di bahtninov, un’idea semplice ma che ha rivoluzionato il modo di fare i flat field. Si tratta di speciali tappi da applicare all’obiettivo del telescopio, con dei led all’interno che illuminano una superficie semitrasparente che ne
    Generatore di flat field d aporre di fronte l'obiettivo del telescopio e con luce regolabile in intensità

    Generatore di flat field d aporre di fronte l’obiettivo del telescopio e con luce regolabile in intensità

    diffonde la luce in modo uniforme. Sono molto semplici e comodi da usare, non richiedono una lampada esterna, una superficie illuminata e neanche di spostare il telescopio, così possiamo fare i flat field tra un filtro e un altro senza perdere il puntamento;

  • Fogli o magliette bianche: sono i metodi storici, decisamente meno comodi delle flat box, e vanno bene per tutti gli strumenti, sebbene siano più indicati per diametri superiori ai 15 cm, per i quali costruire (o comprare) una flat box può essere dispendioso. In questi casi ci si arrangia: si pone di fronte al telescopio un foglio da disegno o un semplice A4 (dipende dalla larghezza dell’obiettivo), bloccandolo con una punta di nastro adesivo. Ci si assicura che l’obiettivo non sia ostruito dal nastro e che il foglio sia ben in tensione, poi si pensa alla fonte di luce: una normale lampada a LED, persino il flash della fotocamera del proprio cellulare, ad almeno a un metro di distanza e sistemata da qualche parte in modo stabile (ad esempio su un piccolo treppiede, su un muro, sul tetto della macchina…). È fondamentale che il fascio di luce sia perpendicolare al foglio che copre il telescopio per assicurare un’illuminazione omogenea: sarà quindi necessario portare il tubo ottico parallelo al terreno. Si può sostituire, soprattutto in caso di emergenza, il foglio da disegno con una maglia bianca, ancorata al tubo con abbondante nastro adesivo per assicurare che sia ben tesa e che non presenti pieghe di fronte all’apertura del telescopio.

 

Il tempo di esposizione

Eccoci arrivati alla questione più importante di tutte, all’operazione che se non è fatta bene può rovinare tutto quello che è stato eseguito fino a questo momento, compresi gli scatti che vogliamo calibrare con i nostri flat field. Trovare il giusto tempo di esposizione per i flat field sembra quasi un’oscura arte, ma con un po’ di nozioni sui sensori digitali e le loro proprietà possiamo fare chiarezza una volta per tutte.

Intanto iniziamo subito con il dare informazioni sulla durata minima degli scatti, che è determinata dalla velocità degli otturatori. Una buona regola empirica ci dice che il tempo sotto il quale non bisogna mai scendere è pari a circa 100 volte quello minimo che è possibile scattare. Questo accorgimento evita di riprendere di fatto l’immagine dell’otturatore che libera prima una parte del campo e poi l’altra, falsando i nostri flat field (l’otturatore non può sparire all’istante!). Per le reflex, capaci di scatti di 1/4000 di secondo, possiamo usare scatti da 1/40 di secondo in su. Per le camere CCD astronomiche dotate di otturatore meccanico parliamo di almeno 4-5 secondi. Per le camere digitali non dotate di otturatore è meglio stare almeno tra i 5 e i 6 secondi. Possiamo aumentare quanto vogliamo l’esposizione ma non dovremo mai andare sotto questi valori.

L’altro fattore che ci permette di scegliere il giusto tempo di esposizione, e/o la potenza della luce, o la distanza della lampada, è rappresentato dalla dinamica del sensore digitale e su questo punto si sono narrate le più disparate leggende, spesso con molte imprecisioni.

Per chi fosse interessato, nel prossimo paragrafo ci sarà qualche spiegazione tecnica in più. Al momento, infatti, ci interessa il lato pratico e in questi casi la regola aurea è semplice: un buon flat field deve avere la luminosità di picco più alta possibile prima di uscire dall’intervallo di linearità del proprio sensore.

Il pregio di ogni sensore digitale, infatti, è di avere una risposta lineare, ovvero l’intensità del segnale è direttamente proporzionale alla luminosità reale della sorgente o, in alternativa, al tempo di esposizione. Così, se per un’esposizione di 5 secondi ho un segnale di luminosità pari a 5000 ADU, raddoppiando l’esposizione avrò un segnale di 10 mila ADU, esattamente il doppio. Analogamente, se raddoppio la luminosità della sorgente, a parità di tempo di esposizione, dovrò avere il doppio del segnale. In un mondo ideale tutti i sensori digitali sono perfettamente lineari fino a quasi i livelli di saturazione del contatore analogico-digitale (65535 ADU per contatori a 16 bit), ma nel nostro imperfetto mondo amatoriale non è così ed è qui che sorgono i problemi: se infatti i flat field non sono fatti nello stesso intervallo di linearità delle immagini che vogliamo correggerem non avremo mai una calibrazione perfetta. Questo inciderà, poi, sui dettagli visibili e sulla qualità generale delle immagini.

Dopo aver fatto lustri di esperienza con i più disparati sensori digitali, ecco le mie indicazioni:

  • Se disponete di una camera CCD (o CMOS) con la porta antiblooming e contatore analogico-digitale a 16 bit, un buon flat field dovrebbe avere luminosità di picco attorno agli 8-9000 ADU. Solo nel caso in cui il fondo cielo delle immagini da correggere oltrepassi questi valori (ma allora avremo sbagliato i tempi di esposizione) si possono ottenere flat field la cui luminosità media (questa volta MEDIA, non di picco) abbia valori più simili possibile al fondo cielo delle immagini da calibrare. Se preferiamo visualizzare l’istogramma invece dei numeri, allora nel primo caso, con il fondo cielo delle immagini da correggere basso, un buon flat si ottiene con l’istogramma a circa 1/6 della scala massima;
  • Se disponete di una camera CCD senza porta antiblooming, quindi di grado scientifico, le cose sono molto semplici: un buon flat field si ottiene con un’esposizione che permette di arrivare a una luminosità di picco pari a circa la metà della luminosità massima consentita, meglio se un poco meno. Per convertitori analogico-digitali a 16 bit questo significa avere picchi di luminosità tra i 25 mila e i 30 mila ADU. Per gli amanti dell’istogramma, il picco dovrebbe stare circa a metà;
  • Per le reflex digitali varrebbe il punto 1) ma a causa del contatore a 14 bit i valori sono tutti scalati e non sempre di facile lettura perché molti software poi convertono la luminosità in scala a 16 bit. Per tagliare la testa al toro, quindi, meglio guardare l’istogramma, che dovrebbe stare a circa 1/3 della scala massima. Si tratta di valori leggermente superiori rispetto al caso 1) perché bisogna fare i conti anche con il rumore di questi sensori: avere flat troppo deboli potrebbe causare più problemi che altro. In questo caso gli scatti dovrebbero essere fatti a ISO bassi (non bisogna scattare alla stessa sensibilità dei frame da correggere, per i flat non serve, anzi, è deleterio perché introdurrebbe rumore) e in modo automatico, facendo scegliere alla fotocamera l’esposizione corretta, magari dicendole di sottoesporre di 1 stop. Se si usano obiettivi o teleobiettivi, il diaframma, invece, deve essere lo stesso usato per fare le foto che si vogliono calibrare. Anche in questi casi, se si è fatto l’errore di fare riprese astronomiche con un fondo cielo molto luminoso, i flat field dovrebbero avere un istogramma il cui picco cada nella stessa zona di luminosità.

È molto importante, una volta trovata l’esposizione giusta, a prescindere dal sensore usato, raccogliere almeno una ventina di flat field, meglio se sono 30: più ne medieremo e migliore sarà il risultato finale.

Queste sono indicazioni generali che vanno bene per tutti i casi. Ciò non toglie che ognuno di noi possa sperimentare: cosa succede ad esempio, se eseguo due set di flat identici, uno con la giusta esposizione e un altro invece con l’istogramma a 2/3 della scala? Funzionano lo stesso? Potrebbe essere, perché tutto dipende dalle proprietà del proprio sensore digitale. I valori dati, quindi, vanno bene in generale sempre, ma non è detto che siano gli unici possibili.  Se vogliamo andare nel dettaglio e capire meglio la storia della giusta esposizione dei flat field, dobbiamo comprendere meglio come funziona un sensore digitale e la sua elettronica.

 

 ADU e full well capacity: andiamo un po’ più a fondo

Ogni sensore digitale cattura la luce attraverso l’effetto fotoelettrico, descritto in modo completo per la prima volta da Albert Einstein nei primi del ‘900 (e che gli valse il premio Nobel). In pratica, per certi materiali, come il silicio, la luce visibile che li colpisce riesce a strappare un numero di elettroni dal reticolo cristallino proporzionale all’intensità della sorgente. Applicando una differenza di potenziale agli estremi del materiale, gli elettroni strappati via vengono fatti fluire ai lati, quindi raccolti, conteggiati e trasformati in segnali luminosi digitali, grazie al contatore analogico-digitale.

 

Ogni pixel di un sensore ha un numero finito di elettroni che può catturare. Quando il contenitore si riempie si arriva alla saturazione. Il numero di elettroni che può contenere un pixel è chiamato Full Well Capacity. L’elettronica del CCD trasforma il numero di elettroni in livelli di luminosità. Per i sensori astronomici i livelli di luminosità disponibili sono in generale 65536, pari a 16 bit. Un’elettronica fatta bene dovrebbe allora riempire questi livelli in modo tale che alla luminosità 0 corrisponda un pixel senza elettroni raccolti e al valore 65535 il massimo numero di elettroni che il pixel contiene. In questo modo si ha la massima efficienza nel convertire la full well capacity in dinamica reale dell’immagine.

Per fare questa operazione in modo adeguato, l’elettronica si serve di quello che viene chiamato guadagno. Si tratta di un coefficiente moltiplicativo da applicare al numero di elettroni raccolti, il cui meccanismo è molto semplice da comprendere. Supponiamo di avere un sensore con full well capacity di ogni pixel pari a 100 mila elettroni, e supponiamo di voler distribuire al meglio tutta questa dinamica nei 65536 livelli di grigio disponibili in un convertitore a 16 bit. Affinché si sfrutti al meglio questo contenitore, occorrerà stipare 100 mila elettroni in 65536 livelli di luminosità, ovvero assegnare a ogni livello di luminosità 1,5 elettroni. Questo è il guadagno: il numero di elettroni necessari per far conteggiare un livello di luminosità al contatore analogico digitale. In un mondo ideale, quindi, parlare di full well capacity in termini di elettroni o di livelli di luminosità è uguale.

In un mondo reale le cose non stanno così perché il guadagno di un sensore non è mai impostato in modo così preciso da far coincidere la saturazione reale dei pixel con quella del contatore analogico-digitale. Di solito si tiene un po’ di margine, assicurandosi che la saturazione reale avvenga prima di quella del contatore. Di conseguenza, per molte camere CCD già verso i 50 mila ADU si ha di fatto la saturazione ma i valori possono cambiare di molto da modello a modello. In questi termini, parlare di ADU come il discriminante per un buon flat field è, a voler essere pignoli, un po’ approssimativo. Quando ad esempio ho detto che per camere senza antiblooming si dovrebbe arrivare a circa metà della dinamica, ci si dovrebbe riferire alla dinamica reale, ovvero al numero di elettroni e non al corrispettivo ADU, perché ci sono camere CCD che a 50 mila ADU presentano già saturazione e altre che lo fanno a 60 mila: in questi casi qual è il valore da prendere come riferimento per avere un flat field, esposto alla vera metà della dinamica? In realtà questa è una questione di “lana caprina” perché le differenze tra i CCD amatoriali non sono così grosse e delicate da rendere necessario l’uso poco pratico della dinamica reale in termini di elettroni e di fare poi la conversione attraverso il guadagno per capire a quanti ADU corrisponde il giusto intervallo.

Se siamo perfezionisti, tuttavia, un buon consiglio è di effettuare un test di linearità del nostro sensore. In questo modo, lavorando in ADU, possiamo vedere dove si verifica la reale saturazione e capire anche qual è la massima luminosità da poter utilizzare per i nostri flat field prima che la risposta cominci a diventare non lineare. Ecco quindi giustificati i valori dati in precedenza, un po’ conservativi e definiti indicativi per ottenere un buon flat field. Ecco, inoltre, giustificato il senso di un mio precedente post in cui si parlava di test di linearità e si arrivava a definire i valori ottimali per fare i flat field, che guardacaso corrispondono a quelli menzionati in questo caso e presi come universali.

CCD, CMOS, CMOS retroilluminati: a che punto siamo?

Agli inizi degli anni ’90/fine anni ’80 sono comparse le prime ccd sul mercato (SBIG, etc), caratterizzate da sensori microscopici (conservo una bellissima Meade Pictor 416XT da ben 768×512 pixel, rigorosamente rettangolari), è iniziata la lenta rivoluzione per l’astronomia amatoriale, che ha portato la schiera degli astrofotografi ad ampliarsi moltissimo rispetto a 20 anni fa, oltre a consentire anche l’inizio delle possibilità di ricerche ad utilità scientifica dal giardino di casa.

All’inizio, come per tutte le nuove tecnologie, le CCD erano estremamente costose, ma poi piano piano, le dinamiche della produzione su scala industriale e vendita globale, hanno portato il costo ad un livello accessibile a molti.

Poi verso l’inizio degli anni ’10 hanno iniziato a diffondersi i sensori CMOS di medio formato sulle DSLR (prima erano presenti nelle webcam, ovviamente in risoluzioni basse, ricordate la Toucam?) e qui è iniziata la prima rivoluzione dopo il CCD, consentendo di impiegare con profitto le DSLR in astrofotografia. Un solo nome: Canon EOS 350D, una camera che ha segnato la storia della nostra passione. Però i CMOS erano caratterizzati da un discreto rumore, a differenza dei CCD. Ricordate quanti progetti per raffreddare le prime webcam modificate le reflex?  Nel frattempo i CCD hanno continuato il loro sviluppo, portando, ad oggi, la diffusione di un sensore in tantissimi modelli di diverse marche: il KAF-8300, che è stato il primo sensore CCD con una discreta risoluzione ad un costo accessibile.

Da pochi mesi hanno iniziato a comparire, nel mercato astronomico (prima hanno sempre fatto la loro comparsa in quello fotografico) i CMOS retroilluminati. Questa tipologia di sensori va ad equipaggiare alcuni modelli di camere raffreddate della ASI e della QHY. La caratteristica che sale subito all’occhio è il prezzo molto molto competitivo rispetto ad una risoluzione equivalente, ma CCD.

La domanda è: ne vale la pena di spendere per un CMOS retroilluminato, rispetto ad un CCD?

Prima andiamo a fare un piccolo riassuntino veloce veloce delle caratteristiche tecnico/costruttive di queste 3 tipologie di sensori.

Premesso che TUTTI i sensori hanno come elemento base e comune il fotodiodo (l’elemento sensibile che genera la carica elettrica quando colpito da un fotone), ecco le differenze principali.

CCD: è conoscenza diffusa che ha un basso rumore, questo perchè da quando il fotodiodo genera la carica elettrica, passa attraverso pochi nodi nel sensore, prima di arrivare al convertitore analogico/digitale che trasforma il segnale da analogico a, per l’appunto, digitale. Qui tutti i fotodiodi sono dedicati alla lettura della luce e l’uniformità del segnale generato è molto alta, per questo la qualità d’immagine è molto alta, con un basso rumore.

CMOS: qui ogni fotodiodo è accompagnato da un convertitore, che trasforma l’energia luminosa ricevuta da ogni fotodiodo in carica elettrica. Ma nel mezzo ci sono anche amplificatori di segnale, riduttori di rumore e circuiti di digitalizzazione che fanno uscire un segnale digitale dal sensore e non analogico come nei ccd. Il fatto che ogni fotodiodo genera una conversione porta ad avere una mancanza di uniformità nel segnale per ragioni prettamente statistiche, dato che la ripetibilità esatta di un’operazione non è mai standard al 100% (pensate a quanti pixel ci sono in un sensore..). Però il consumo di corrente è più basso rispetto ai ccd e..la produzione in scala industriale, unito al continuo sviluppo, ha portato ai risultati qualitativi che tutti oggi vediamo.

CMOS Retroilluminato: tralasciando il ccd retroilluminato che non ha importanza rilevante nella fascia consumer di riferimento per l’astrofilo, questi sensori sono l’evoluzione dei precedenti CMOS e secondo me sono il futuro per l’imaging estetico in astrofotografia.

Potete osservare come nei CMOS tradizionali  i fotodiodi siano sotto la circuiteria, mentre nei retroilluminati è posta sopra.

cmos vs cmos retroilluminato

Come l’illustrazione raffigura in modo, secondo me, efficace, nei CMOS tradizionali la circuiteria funge da diaframma, disperdendo una parte del segnale entrante. Nei CMOS retroilluminati, invece, la circuiteria è posta sotto i fotodiodi (lo stesso concetto si applica anche ai CCD retroilluminati).

Il risultato? nelle caratteristiche di molti sensori CMOS retroilluminati della Sony che equipaggiano camere ASI e QHY vediamo una Q.E. tra il 70% e l’80%. E’ un valore MOLTO alto per uno standard CMOS! Certo, le microlenti aiutano (ma anche il KAF 8300 le usa..), ma se incrociate Q.E., megapixel e costo della camera raffreddata….siamo tranquillamente al 50% del prezzo di una camera equipaggiata con sensore CCD di ultima generazione con risoluzione e Q.E. simile.

Ma come vanno le camere con CMOS retroilluminato rispetto alle CCD di ultima generazione?

Io inizierei a parlare nell’ambito Sony. Ho preso 2 dark di riferimento, da 5 minuti, eseguiti con una Atik 428ex ed una Asi 178MMC, entrambe con il TEC al 100%.

L’Atik 428ex è equipaggiata con un Sony ICX694 che ha una Q.E. di circa il 76% a 550nm. (link)

La Asi 178MMC invece monta un Sony IMX174, retroilluminato, che ha una Q.E. stimata intorno al 70-75% a 550nm.

I dark li vedete così come li apre nebulosity e poi una versione con un po’ di stretch, in modo da tirar fuori il rumore sottostante.

 

Atik 428ex

428ex_5m         428ex_5m_stretch

 

Asi 178MMC

178mmc_5m        178mmc_5m_stretc

Potete notare, nelle versioni con i livelli compressi, come il sensore CMOS retroilluminato abbia un rumore di fondo molto superiore rispetto al CCD. Però ci sono 800€ di differenza tra una camera e l’altra, oltre a qualche mpx di risoluzione. Tralascio la questione dimensione dei pixel.

Ok, il CMOS retroilluminato è più rumoroso e si sapeva, ma che succede se calibro l’immagine, come devo fare con qualsiasi CCD?

Ecco un jpg di M27 in OIII, calibrato con dark e bias e tirato solamente nei livelli al limite del rumore.

oiii_calibrato

Come potete notare il risultato è assolutamente apprezzabile, tenuto conto che la ripresa è stata fatta dal centro città, in ottobre, con il soggetto basso.

Il segnale del sensore CCD è ancora indiscutibilmente superiore, però calibrando le immagini, per fini di imaging estetico, a mio avviso i sensori CMOS retroilluminati sono una scelta fantastica per chi vuole una camera di ripresa raffreddata a basso costo e potersi divertire senza spendere una cifra.

I prezzi delle 2 camere: 1770€ per la Atik 428ex e 918€ per la ASI 178MMC.

In preparazione il test della ASI 178MMC, lo troverete sempre sul nostro blog!