winjupos_2009-2017_scheda_dofter

Fotografiamo la superficie di Venere!

Venere sta dominando queste serate di fine inverno e dominerà le albe di tutta la primavera, quindi non possiamo non parlare di questo faro del cielo. Non sarà però il solito post che ci insegna a osservare le solite fasi di Venere, anzi, tutt’altro!

Il nostro gemello, con dimensioni e massa molto simili, è in realtà una vera e propria Nemesi: l’atmosfera è decine di volte più densa, composta quasi per intero da anidride carbonica e con minacciose nuvole di acido solforico. Sulla superficie la temperatura, di giorno come di notte, ai poli come all’equatore, è stabile, da chissà quanto tempo, allo stratosferico valore di +460°C. Venere è un forno inospitale per qualsiasi forma di vita e per di più la sua superficie è del tutto nascosta alla nostra vista da chilometri di nuvole che non lasciano mai neanche uno spiraglio ai nostri telescopi.

Per centinaia di anni dopo l’invenzione del telescopio, nessun essere umano è riuscito a capire cosa si nascondesse sotto le nuvole venusiane, fino a quando negli anni ‘60 le prime sonde sovietiche giunsero sull’inospitale superficie.

La mappatura completa di Venere è stata effettuata dalla sonda Magellano che negli anni ’80, grazie a un radar, ha composto la prima mappa geologica e altimetrica del pianeta. Anche se noi non lo possiamo vedere, Venere ha crateri da impatto, montagne, pianure, colline, scarpate e valli. Ma siamo sicuri che non ci sia alcun modo per sbirciare la superficie venusiana senza dover friggere a bordo di un’improbabile astronave che tenta di superare quelle fitte nuvole? La Natura in questo caso ci dà una grossa mano.

La superficie di Venere, a causa dell’enorme temperatura, emette radiazione elettromagnetica, proprio come un pezzo di ferro rovente. Con un picco verso i 4 micron ma una coda di emissione che arriva anche a 800 nm, questa radiazione termica riesce a uscire in parte dalla spessa atmosfera. Attorno alla lunghezza d’onda di 1000 nm (1 micron), infatti, l’atmosfera venusiana diventa trasparente e il calore della superficie può uscire nello spazio ed essere quindi osservato. La radiazione termica di Venere è molto più debole della luce solare riflessa dall’alta atmosfera ma se ci concentriamo sul lato non illuminato quando il pianeta mostra una fase molto sottile, allora l’impossibile diventa possibile.

Con un filtro infrarosso da un micron (1000 nm) e una camera planetaria, meglio se monocromatica, o una camera CCD per profondo cielo e un telescopio da almeno 15 cm su montatura motorizzata, è possibile fare una serie di fotografie a lunga esposizione, bruciando la falcetta di Venere e lasciando che la più debole radiazione termica del lato non illuminato venga alla luce. Non potremo mai osservarla all’oculare del telescopio perché i nostri occhi non sono sensibili agli infrarossi, ma abbiamo appena scritto la ricetta per una fotografia molto speciale.

La tecnica migliore prevede di acquisire immagini a una focale non troppo elevata, poiché si tratta a tutti gli effetti di una ripresa deep-sky e non più in alta risoluzione. Focali comprese tra i 2 e i 3 metri sono ottime per questo scopo. Dobbiamo aumentare l’esposizione e/o il guadagno, senza curarci della luminosità della parte illuminata.
La magnitudine superficiale del lato non illuminato è di circa 12 su ogni secondo d’arco quadrato, circa come quella del pianeta Nettuno e molto più alta di ogni oggetto del profondo cielo. Sebbene quindi si possa osservare la debole radiazione anche con tempi di posa brevi, di circa 0,2 secondi, per avere un ottimo segnale è meglio fare tante esposizioni con tempi compresi tra 2 e 5 secondi. Se la montatura è ben stazionata al polo non si avranno neanche problemi di inseguimento. Più frame si acquisiscono e meglio è, tanto non ci sono problemi di rotazione del pianeta. L’unica limitazione è rappresentata dal fatto che è necessario fare una ripresa del genere con il Sole tramontato e con il fondo cielo scuro.

Luce cinerea? Sì, ma di Venere e non è riflessa!

Luce cinerea? Sì, ma di Venere e non è riflessa!

Se siamo bravi e pazienti e magari disponiamo di una camera CCD per le riprese del profondo cielo, oltre al suggestivo chiarore della parte non illuminata, che renderà Venere simile alla luce cinerea lunare, potremo mettere in evidenza anche strutture superficiali. Il principio è semplice: le montagne e gli altopiani avranno temperature minori rispetto alle valli e alle grandi pianure, quindi emetteranno meno radiazione termica.

In effetti, con esposizioni lunghe, telescopi da almeno 15 centimetri, una fase della parte non illuminata inferiore al 25%, un cielo ormai scuro e acquisendo qualche centinaio di frame, è possibile mostrare la traccia inequivocabile di dettagli superficiali. Questa è una piccola rivoluzione per noi: con la nostra strumentazione possiamo fotografare la superficie di Venere, in barba a tutti quei tossici e infernali strati nuvolosi!

Non ci credete? E allora osservate questa foto che ritrae i principali dettagli superficiali, che ho composto con le immagini ottenute nel 2009 e il 18-19 febbraio scorsi. Questo è l’aspetto del nostro pianeta gemello e questo è quello che si potrà vedere da qui a pochi giorni prima della congiunzione con il Sole del 23 Marzo. Ma poi, all’alba, i giochi potranno ricominciare di nuovo e almeno fino alla metà di maggio potremo ancora cacciare questa elusiva “luce cinerea” venusiana con i nostri strumenti. Non lasciamoci sfuggire questa ghiotta occasione, altrimenti dovremo aspettare più di un anno per riprovare l’impresa!

Dettagli superficiali di Venere

Dettagli superficiali di Venere

 

L’occultazione di Venere da parte della Luna ripresa il 18 giugno 2007 alle 17:54 del pomeriggio. Il filtro passa infrarosso da 700 nm ha aumentato in contrasto come se la foto fosse stata fatta di notte.

Un filtro indispensabile in fotografia: l’infrarosso

Chiunque si diverta a fare foto ai pianeti, dai neofiti ai più esperti, deve fare i conti con un nemico comune: la turbolenza atmosferica. Si possono possedere gli strumenti più potenti, padroneggiare le tecniche più sopraffine, utilizzare le camere più sensibili, ma la turbolenza atmosferica è così democratica che non guarda in faccia nessuno e ci ricorda, fin troppo spesso, quanto in astronomia ogni successo debba essere sudato.

Con Marte ancora padrone dei nostri cieli, ma anche molto basso sull’orizzonte, le serate con buon seeing, ovvero con bassa turbolenza, in cui ottenere scatti ad alta risoluzione, saranno davvero scarse. Anche la Luna si presenterà generalmente più bassa sull’orizzonte rispetto alla stagione primaverile o invernale, con il rischio concreto di fare la fine del dio della guerra: entrambi affogati nel ribollire atmosferico.

In fotografia planetaria possiamo arginare l’effetto nefasto della turbolenza atmosferica con un filtro che a volte fa davvero miracoli: un passa infrarosso, detto IR-pass.

Tutti i sensori fotografici sono sensibili alle lunghezze d’onda infrarosse. In generale questa parte dello spettro viene eliminata usando il classico filtro taglia infrarosso, ma quando la turbolenza è alta bisogna ricorrere a misure drastiche: non più un filtro taglia infrarosso ma un PASSA infrarosso, in modo da lavorare alle lunghezze d’onda invisibili al nostro occhio ma alle quali la turbolenza migliorerà, a volte anche molto. Con un filtro passa infrarosso ci si dovrà accontentare di immagini in bianco e nero, che però potremo “colorare” con una ripresa a colori ottenuta poco prima o dopo, se proprio non vogliamo rinunciare all’effetto cromatico, anche se questa fosse di scarsa qualità.

Un filtro IR-pass su Marte ha anche il privilegio di aumentare di molto il contrasto dei dettagli superficiali: il pianeta si arricchirà di chiaroscuri che prima, sul monitor, non si sarebbero visti.

marte

Quando il seeing non è perfetto, il filtro passa infrarosso su Marte può fare la differenza tra vedere e non vedere dettagli superficiali.

 

Nel caso della Luna, un filtro passa infrarosso riduce leggermente i contrasti ma questo non è un danno, anzi, è un vantaggio quando si riprendono zone vicine al terminatore che spesso presentano forti differenze di luminosità. I bordi dei crateri saranno più difficili da saturare e la ripresa fotografica ne guadagnerà molto.

Il filtro passa infrarosso si può usare solo in fotografia e non in visuale e solo su dispositivi che non possiedono incorporato un filtro taglia infrarosso, come il caso delle reflex non modificate. Con camere planetarie come le ASI, sia a colori che monocromatiche, e in generale con ogni camera CCD per astronomia, il problema non si pone e questo filtro potrebbe salvare una serata fotografica altrimenti rovinata.

I sensori digitali sono sensibili fino a 1000 nm di lunghezza d’onda, ma con la sensibilità che diminuisce progressivamente a partire dai 700 nm, lunghezza d’onda alla quale inizia, convenzionalmente, l’infrarosso. Di conseguenza, nonostante esistano in commercio filtri infrarossi di diverse bande passanti, il consiglio è di iniziare con uno più facile da domare, ovvero che abbia una banda passante che inizia tra i 680 e i 700 nm.

Non è finita qui. Nell’infrarosso, inoltre, il fondo cielo diventa così scuro che è possibile persino fare fotografie dei corpi del Sistema Solare anche di giorno. L’emblema di questa rivoluzione è rappresentato dalla Luna, che pochi giorni dopo la fase nuova mostra con il massimo contrasto regioni altamente spettacolari, come il grande mare Crisum. Se aspettiamo di fare fotografie con il Sole sotto l’orizzonte, il nostro satellite sarà troppo basso per garantirci una risoluzione accettabile. Il problema viene quindi risolto facendo foto di giorno, con la Luna alta sull’orizzonte e con il filtro passa infrarosso che ci regalerà lo straordinario effetto di una normale ripresa notturna e mostrerà dettagli lunari che pochi osservatori hanno ripreso con tale dettaglio.

L’occultazione di Venere da parte della Luna ripresa il 18 giugno 2007 alle 17:54 del pomeriggio. Il filtro passa infrarosso da 700 nm ha aumentato in contrasto come se la foto fosse stata fatta di notte.

L’occultazione di Venere da parte della Luna ripresa il 18 giugno 2007 alle 17:54 del pomeriggio. Il filtro passa infrarosso da 700 nm ha aumentato in contrasto come se la foto fosse stata fatta di notte.

Un filtro passa infrarosso è il grande segreto che ci permetterà anche di fare ottime fotografie di Mercurio, il piccolo pianeta che purtroppo non si allontana più di 20° dal Sole. Ogni volta che proveremo a osservarlo o fotografarlo di notte lo troveremo bassissimo sull’orizzonte e privo di qualsiasi dettaglio. Con un filtro infrarosso, invece, il pianeta diventa visibilissimo anche di giorno, quando si trova alto sull’orizzonte. E’ in queste condizioni che ho trovato le migliori occasioni per fotografarlo in alta risoluzione e scoprire che anche questo elusivo corpo celeste mostra fini e interessantissimi dettagli, che troppo spesso vengono nascosti dalla turbolenza atmosferica.

Mercurio ripreso di giorno, quando è alto sull’orizzonte e con un filtro passa infrarosso: questo è l’unico metodo per ottenere immagini in alta risoluzione di questo elusivo pianeta.

Mercurio ripreso di giorno, quando è alto sull’orizzonte e con un filtro passa infrarosso: questo è l’unico metodo per ottenere immagini in alta risoluzione di questo elusivo pianeta.

Non solo pianeti, a dire la verità.

Un filtro passa infrarosso permette anche di spingerci verso un campo entusiasmante della fotografia astronomica del cielo profondo. A queste lunghezze d’onda, infatti, molti oggetti, in particolare le nebulose a emissione, cambiano aspetto: le polveri, presenti in grande quantità, diventano quasi trasparenti e nelle fotografie compariranno decine, centinaia di piccole stelle che alla lunghezza d’onda del visibile non saranno mai visibili.

Ci sono vaste zone di cielo in cui l’assorbimento causato dalle polveri presenti nella nostra Galassia oscura tutto quello che c’è dietro, tra cui altre galassie. È proprio alla lunghezza d’onda dell’infrarosso che il compianto Professore Paolo Maffei scoprì due galassie nella costellazione di Cassiopea, tanto vicine quanto invisibili normalmente a causa del forte assorbimento della Via Lattea. Alle lunghezze d’onda infrarosse le galassie Maffei diventano tra gli oggetti extragalattici più brillanti del cielo e possono essere fotografate anche con modesti strumenti da 70-80 mm di diametro. Possiamo quindi dire che un filtro infrarosso è un potente fendinebbia cosmico, che consente di vedere anche oltre l’impenetrabile cortina di polveri che permea gran parte del cielo, soprattutto nei pressi del disco galattico.

Maffei 1, a sinistra, e Maffei 2, a destra, sono galassie impossibili da notare alle lunghezze d’onda visibili, ma nell’infrarosso appaiono magicamente dalle dense polveri della Via Lattea.

Maffei 1, a sinistra, e Maffei 2, a destra, sono galassie impossibili da notare alle lunghezze d’onda visibili, ma nell’infrarosso appaiono magicamente dalle dense polveri della Via Lattea.

Se ci piace sperimentare e abbiamo a disposizione un telescopio da almeno 20 centimetri, possiamo acquistare, oltre al passa-infrarosso da 680-700 nm, anche un filtro più “spinto” da 800 o addirittura 900 nm. A queste lunghezze d’onda il cielo diurno diventa così scuro che è persino possibile fotografare al telescopio tutte le stelle che vedremmo di notte a occhio nudo, i satelliti di Giove e persino qualche brillante cometa che si avvicina molto alla nostra stella e che in condizioni normali non sarebbe mai visibile.

Incredibile come l’astronomia, anche amatoriale, possa sorprendere, vero? E pensare che tutto dipende dalla nostra voglia di esplorare e provare. Avete altre idee per usare con profitto un filtro passa infrarosso?

Giove e i suoi satelliti, di giorno, grazie all’uso di un filtro passa infrarosso molto spinto, addirittura da 1000 nm (1 micron). Non serve spingere la banda così in là: risultati del genere si possono ottenere anche con filtri da 700-800 nm.

Giove e i suoi satelliti, di giorno, grazie all’uso di un filtro passa infrarosso molto spinto, addirittura da 1000 nm (1 micron). Non serve spingere la banda così in là: risultati del genere si possono ottenere anche con filtri da 700-800 nm.

 

Incredibile ma vero: un filtro passa infrarosso diminuisce così tanto la luminosità del fondo cielo da rendere visibili persino brillanti comete a pochi gradi dal Sole. In questo caso stiamo osservando la cometa McNaught del 2007.

Incredibile ma vero: un filtro passa infrarosso diminuisce così tanto la luminosità del fondo cielo da rendere visibili persino brillanti comete a pochi gradi dal Sole. In questo caso stiamo osservando la cometa McNaught del 2007.