Montare un filtro da 2″ davanti ad un obiettivo fotografico

Geoptik produce da tempo un interessante raccordo, che permette di montare filtri da 2″ su obiettivi con filetto da 58mm ( http://www.teleskop-express.it/adattatori-verso-2/1285-adattatore-filtri-2-geoptik.html ). Tenuto conto che la fotografia astronomica a grande campo è da diversi anni che sta attraendo nuovi astrofotografi, specie grazie all’interessamento anche dei fotografi paesaggisti in prevalenza, in tanti si pongono il problema nel caso dovessero montare un filtro per riprendere, ad esempio un halpha oppure un filtro LPR.

Nel caso si possieda una Canon in formato APS-C la soluzione è semplice, ci sono i filtri EOS-Clip della Astronomik, ma per chi possiede reflex di altre marche? Qualcosa sembra muoversi sul fronte Sony, grazie all’interessamento di Hutec, ma al momento chi ha una reflex al di fuori di Canon, purtroppo, non ha moltissime scelte. Una soluzione è quella di montare un filtro da 2″ davanti al nostro obiettivo, ma se non ha il filetto M58, ma più grande, come posso fare se volessi usare l’adattatore Geoptik?

Per fortuna Amazon ci viene incontro! Infatti basta prendere degli anelli Step Down, che costano davvero poco, un esempio: https://www.amazon.it/49mm-Anelli-Lenti-Adattatore-Filtri/dp/B008H2HUC4/ref=sr_1_3?ie=UTF8&qid=1478534130&sr=8-3&keywords=step+down+ring

In questo modo, spendendo meno di 10€, possiamo montare il nostro bel filtro e fare quello che vogliamo. Però la vignettatura introdotta, quanto mi inciderà e a che focali?

Bene, qui si sviluppa il nostro piccolo test. Ho montato la serie di anelli Step Down, fino al filetto M58 per poi montare l’adattatore Geoptik, su 2 obiettivi Canon in mio possesso e usati con una reflex Full Frame.

Attenzione!!!! I risultati sono stati ottenuti con una reflex full frame, quindi con un formato APS-C le tolleranze sono maggiori.

Qui sono stati montati gli anelli Step Down e l’adattatore Geoptim 30A193 su di un Canon 17-40L

img_9141

Ovviamente più la focale è bassa, più avremo l’effetto vignettatura, che a focali ultragrandandolari assume una rilevanza da..buco della serratura!

Qui a 17mm, immagine inutilizzabile

17-40_17mm

Qui invece a 40mm, l’immagine diventa usabile, tenuto conto della fisiologica vignettatura di ogni obiettivo

17-40_40mm

Con focali da 100 e 400mm ovviamente nessun problema:

100-400_100mm 100-400_200mm

Gli obiettivi usati hanno un diametro per i filtri da 77mm, bello grande, quindi più anelli dobbiamo mettere, più il nostro filtro si sposterà lontano dalla lente e…vignetteremo. Sicuramente la configurazione che ho usato è una delle peggiori possibili come tolleranze, diametro grande e sensore full frame.

In linea di massima si può dire che con reflex full frame ed obiettivi con diametro sui 77mm, la focale minima usabile parte da 30mm circa. Con sensore APS-C e obiettivi con diametro minore, ovviamente avremo MOLTA più tolleranza per operare a focali ultragrandangolari.

A mio avviso vale la pena provare, per neanche 10€ + adattatore Geoptik 30A193, provare a montare un filtro da 2″ sulla nostra reflex e tentare qualche bella ripresa. Ad esempio io proverò a riprendere in halpha, con una Sony A7s modificata e a focali dai 50mm in su, il complesso di nebulose in Orione con il suo anello di Barnard, vediamo cosa salterà fuori e se la vignettatura causerà problemi o meno, buone riprese a grande campo a tutti!

ASI 178MMC – test

Da quando sono arrivate sul mercato mi hanno incuriosito moltissimo, specie per i sensori CMOS retroilluminati Starvis di nuova generazione, che puntano molto su pixel piccoli (fantastici per i rifrattori a corta focale e per i sistemi hyperstar) offrendo anche una dimensione in mpx più che adeguata, senza dimenticare una Q.E. che mediamente si attesta tra il 70 e 80%. Le Asi si sono guadagnate con merito la fama di ottime camere planetarie, ma come andranno questi sensori e l’elettronica abbinata, nelle riprese deep? Il mio dubbio principale è riguardo il fatto se si riesce ad ottenere un light frame, dopo la calibrazione, che sia elaborabile in modo similare a quelli ottenuti dalle CCD classiche.

Le Asi raffreddate sono raffreddate con ventola e cella di Peltier che offre un delta di raffreddamento di circa -35° rispetto alla T ambiente. Quindi la capacità di raffreddamento c’è, ma…il sensore come va, se raffreddato?

In questo test mi sono divertito (ho iniziato per la verità..) con una ASI 178 MMC, che secondo me è una camera molto appetibile, perchè per meno di 1000€ offre una elevata Q.E. (non è dichiarata, ma stimanta intorno al 75% a 550nm), ben 6.4 mpx e sopratutto sono sufficienti i filtri da 31,8mm, molto più economici di quelli da 2″. Sulla carta, sembrerebbe un’ottima camera per chi non ha il budget per arrivare a CCD più blasonate.

http://www.teleskop-express.it/ccd-deep-sky/2006-asi-178-mmc-zwoptical.html

Per iniziare a saggiare il sensore, ho ripreso bias, dark da 5-10-15 minuti, per poi approciarmi su M27, non tanto alta in Ottobre, dal centro del mio paese, Montebelluna, noto per riuscire ad offrire un IL simile a Milano nonostante ci siano circa 2 milioni di abitanti in meno..non male!

bias

bias

 

 

 

 

 

 

 

dark, 5 minuti , sensore a -25°

dark-5min

 

 

 

 

 

 

 

dark, 10 minuti, sensore a -25°

dark-10min

 

 

 

 

 

 

 

dark, 15 minuti, sensore a -25°

dark-15min

 

 

 

 

 

 

 

 

Come potete vedere, il rumore è presente e sopratutto l’amplificatore di segnale..ci mostra la sua presenza con chiarezza, generando un amp-glow bello tosto.

Qui un paio di esposizioni, non calibrate, da 15 minuti in ha e OIII su M27, eseguite con un TEC110

ha

ha-15min

 

 

 

 

 

 

 

OIII

oiii-15min

 

 

 

 

 

 

 

 

Si nota come di segnale ce ne sia (d’altronde la Q.E. non mente), ma l’amp-glow ed il rumore sono ben presenti. Cosa succede se calibriamo i frame?

 

ha, stack dei frame calibrati

ha-calibrato-stack

 

 

 

 

 

 

 

OIII, stack dei frame calibrati

oiii-calibrato-stack

 

 

 

 

 

 

 

 

Potete notare come lo stack dei frame calibrati, con dark e bias, restituisca un light frame proprio ben lavorabile, pulito e ricco di segnale.

Ho affidato il file grezzi agli amici Marco Favro, Edoardo Luca Radice, Riccardo Crescimbeni, Massimiliano Zulian, etc, e….ecco il risultato, ottenuto con pixinsight

img_9004 img_9006 img_9007

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

il terzo canale del colore è stato ottenuto sinteticamente dall’ ha e dall’OIII, le rese cromatiche differenti sono proprio per via della differente interpretazione nell’elaborazione.

Qui  potete scaricare un file zip con dentro i fit delle immagini postate nell’articolo.

Come potete vedere è possibile ottenere delle ottime immagini, trattando i frame esattamente come si fa per le classiche CCD, inoltre la ASI 178 MMC offre una Q.E. molto elevata, simile a quella dei sensori CCD Sony di ultima generazione, ma dal costo molto più elevato.

La mia conclusione è che..se il budget è basso, questa camera vi darà ugualmente grandi soddisfazioni!

asi-vs-atik

CCD, CMOS, CMOS retroilluminati: a che punto siamo?

Agli inizi degli anni ’90/fine anni ’80 sono comparse le prime ccd sul mercato (SBIG, etc), caratterizzate da sensori microscopici (conservo una bellissima Meade Pictor 416XT da ben 768×512 pixel, rigorosamente rettangolari), è iniziata la lenta rivoluzione per l’astronomia amatoriale, che ha portato la schiera degli astrofotografi ad ampliarsi moltissimo rispetto a 20 anni fa, oltre a consentire anche l’inizio delle possibilità di ricerche ad utilità scientifica dal giardino di casa.

All’inizio, come per tutte le nuove tecnologie, le CCD erano estremamente costose, ma poi piano piano, le dinamiche della produzione su scala industriale e vendita globale, hanno portato il costo ad un livello accessibile a molti.

Poi verso l’inizio degli anni ’10 hanno iniziato a diffondersi i sensori CMOS di medio formato sulle DSLR (prima erano presenti nelle webcam, ovviamente in risoluzioni basse, ricordate la Toucam?) e qui è iniziata la prima rivoluzione dopo il CCD, consentendo di impiegare con profitto le DSLR in astrofotografia. Un solo nome: Canon EOS 350D, una camera che ha segnato la storia della nostra passione. Però i CMOS erano caratterizzati da un discreto rumore, a differenza dei CCD. Ricordate quanti progetti per raffreddare le prime webcam modificate le reflex?  Nel frattempo i CCD hanno continuato il loro sviluppo, portando, ad oggi, la diffusione di un sensore in tantissimi modelli di diverse marche: il KAF-8300, che è stato il primo sensore CCD con una discreta risoluzione ad un costo accessibile.

Da pochi mesi hanno iniziato a comparire, nel mercato astronomico (prima hanno sempre fatto la loro comparsa in quello fotografico) i CMOS retroilluminati. Questa tipologia di sensori va ad equipaggiare alcuni modelli di camere raffreddate della ASI e della QHY. La caratteristica che sale subito all’occhio è il prezzo molto molto competitivo rispetto ad una risoluzione equivalente, ma CCD.

La domanda è: ne vale la pena di spendere per un CMOS retroilluminato, rispetto ad un CCD?

Prima andiamo a fare un piccolo riassuntino veloce veloce delle caratteristiche tecnico/costruttive di queste 3 tipologie di sensori.

Premesso che TUTTI i sensori hanno come elemento base e comune il fotodiodo (l’elemento sensibile che genera la carica elettrica quando colpito da un fotone), ecco le differenze principali.

CCD: è conoscenza diffusa che ha un basso rumore, questo perchè da quando il fotodiodo genera la carica elettrica, passa attraverso pochi nodi nel sensore, prima di arrivare al convertitore analogico/digitale che trasforma il segnale da analogico a, per l’appunto, digitale. Qui tutti i fotodiodi sono dedicati alla lettura della luce e l’uniformità del segnale generato è molto alta, per questo la qualità d’immagine è molto alta, con un basso rumore.

CMOS: qui ogni fotodiodo è accompagnato da un convertitore, che trasforma l’energia luminosa ricevuta da ogni fotodiodo in carica elettrica. Ma nel mezzo ci sono anche amplificatori di segnale, riduttori di rumore e circuiti di digitalizzazione che fanno uscire un segnale digitale dal sensore e non analogico come nei ccd. Il fatto che ogni fotodiodo genera una conversione porta ad avere una mancanza di uniformità nel segnale per ragioni prettamente statistiche, dato che la ripetibilità esatta di un’operazione non è mai standard al 100% (pensate a quanti pixel ci sono in un sensore..). Però il consumo di corrente è più basso rispetto ai ccd e..la produzione in scala industriale, unito al continuo sviluppo, ha portato ai risultati qualitativi che tutti oggi vediamo.

CMOS Retroilluminato: tralasciando il ccd retroilluminato che non ha importanza rilevante nella fascia consumer di riferimento per l’astrofilo, questi sensori sono l’evoluzione dei precedenti CMOS e secondo me sono il futuro per l’imaging estetico in astrofotografia.

Potete osservare come nei CMOS tradizionali  i fotodiodi siano sotto la circuiteria, mentre nei retroilluminati è posta sopra.

cmos vs cmos retroilluminato

Come l’illustrazione raffigura in modo, secondo me, efficace, nei CMOS tradizionali la circuiteria funge da diaframma, disperdendo una parte del segnale entrante. Nei CMOS retroilluminati, invece, la circuiteria è posta sotto i fotodiodi (lo stesso concetto si applica anche ai CCD retroilluminati).

Il risultato? nelle caratteristiche di molti sensori CMOS retroilluminati della Sony che equipaggiano camere ASI e QHY vediamo una Q.E. tra il 70% e l’80%. E’ un valore MOLTO alto per uno standard CMOS! Certo, le microlenti aiutano (ma anche il KAF 8300 le usa..), ma se incrociate Q.E., megapixel e costo della camera raffreddata….siamo tranquillamente al 50% del prezzo di una camera equipaggiata con sensore CCD di ultima generazione con risoluzione e Q.E. simile.

Ma come vanno le camere con CMOS retroilluminato rispetto alle CCD di ultima generazione?

Io inizierei a parlare nell’ambito Sony. Ho preso 2 dark di riferimento, da 5 minuti, eseguiti con una Atik 428ex ed una Asi 178MMC, entrambe con il TEC al 100%.

L’Atik 428ex è equipaggiata con un Sony ICX694 che ha una Q.E. di circa il 76% a 550nm. (link)

La Asi 178MMC invece monta un Sony IMX174, retroilluminato, che ha una Q.E. stimata intorno al 70-75% a 550nm.

I dark li vedete così come li apre nebulosity e poi una versione con un po’ di stretch, in modo da tirar fuori il rumore sottostante.

 

Atik 428ex

428ex_5m         428ex_5m_stretch

 

Asi 178MMC

178mmc_5m        178mmc_5m_stretc

Potete notare, nelle versioni con i livelli compressi, come il sensore CMOS retroilluminato abbia un rumore di fondo molto superiore rispetto al CCD. Però ci sono 800€ di differenza tra una camera e l’altra, oltre a qualche mpx di risoluzione. Tralascio la questione dimensione dei pixel.

Ok, il CMOS retroilluminato è più rumoroso e si sapeva, ma che succede se calibro l’immagine, come devo fare con qualsiasi CCD?

Ecco un jpg di M27 in OIII, calibrato con dark e bias e tirato solamente nei livelli al limite del rumore.

oiii_calibrato

Come potete notare il risultato è assolutamente apprezzabile, tenuto conto che la ripresa è stata fatta dal centro città, in ottobre, con il soggetto basso.

Il segnale del sensore CCD è ancora indiscutibilmente superiore, però calibrando le immagini, per fini di imaging estetico, a mio avviso i sensori CMOS retroilluminati sono una scelta fantastica per chi vuole una camera di ripresa raffreddata a basso costo e potersi divertire senza spendere una cifra.

I prezzi delle 2 camere: 1770€ per la Atik 428ex e 918€ per la ASI 178MMC.

In preparazione il test della ASI 178MMC, lo troverete sempre sul nostro blog!

collimazione_newton_star_test

Collimazione facile e precisa di un Newton

Collimazione facile e precisa di un Newton

Nella grande panoramica dei telescopi, il Newton è da sempre considerato uno schema ottico che offre una buona apertura in rapporto al costo, grazie alla facilità nella costruzione, rispetto ad altri schemi (rifrattori, SC, etc).
Però la bestia nera della maggior parte degli astrofili è sempre lei: la collimazione.

“Il Newton è bello, tanta apertura, veloce anche in foto, universale, si, ma….”

Ma.
Ma collimiamolo facilmente! Da anni si legge su internet della collimazione dei newtoniani usando la barlow abbinata al collimatore laser. Personalmente ho sperimentato a fondo una combinazione delle 2 cose che vorrei proporvi, senza imbarcarsi in costosi collimatori dalle mille funzionalità, perché a volte si può avere molto con poco!

Setup usato:
Collimatore laser TSLA: http://www.teleskop-express.it/collimazione/226-tsla-ts-optics.html
Lente di barlow…qualsiasi! Io ne ho usata una molto economica: http://www.teleskop-express.it/barlow-e-riduttori/170-tsb21-ts-optics.html

Se poi proprio vogliamo giocarcela ancora meglio, sarebbe fantastico modificare il Newton con uno dei kit di collimazione Astronomy Expert ora disponibili per i GSO (in arrivo anche quelli Skywatcher a fine ottobre!)
http://www.teleskop-express.it/collimazione/2560-ae-collimation-tool-per-newton-gso-passo-metrico-astronomy-expert.html

collimatore per newton e barlow per collimazione telescopio newton

 

Step 1: collimazione del secondario

Iniziamo a collimare il secondario come sempre: inseriamo solo il laser nel focheggiatore e muoviamo le 3 vitine di regolazione del secondario, in modo portare il puntino rosso del laser al centro del bollino bianco incollato sul primario

collimazione_secondario_newton

Bene, ora siamo pronti per la collimazione del primario:

 

Step 2: collimazione del primario

Non tocchiamo il laser (assicuriamoci di averlo montato con la finestrella che guardi dalla nostra parte, mentre siamo posizionati sulla cella del primario) e dobbiamo operare come segue:

Sbloccare le viti di blocco del vostro newton, cella del primario (fare riferimento al manuale di istruzioni..o a noi!)
Portare il raggio laser verso il foro centrale di ritorno, come da immagini, usando le viti di collimazione della cella del primario (come prima, fare riferimento alle istruzioni o a noi per un aiuto)

collimazione_primario_1_newton

collimazione_primario_2_newton

A questo punto siete abbastanza collimati, ma non perfettamente, perché il laser ed i vari riduttori da 2” a 31,8mm hanno delle tolleranze meccaniche tra di loro che rendono la collimazione con il laser, sul primario, buona, ma non perfetta.

Raggiungiamo la perfezione!

 

Step 3: la collimazione fine del primario

Adesso rimuoviamo il laser e montiamo la nostra barlow sul telescopio, inserendo poi nuovamente il laser come se fosse un oculare. Accendiamo il laser e dovremmo vedere qualcosa di molto interessante.
La barlow ha l’effetto di “spalmare” il fascio del laser, che andando a proiettarsi sull’anellino bianco che va ad indicare il centro del primario, produce un’ombra. Essendo circolare il nostro bollino adesivo sul primario, il cerchio avrà anche un suo centro..ovviamente!
Guardate la figura: si vede la macchia del laser, con l’ombra del bollino del primario. Notate anche che al centro dell’ombra ci sono 3 cerchietti concentrici di diffrazione che vanno ad indicare il centro della nostra riflessione (se il bollino è posizionato bene è anche il centro del primario).

Dobbiamo portare questi cerchietti nel centro del foro di ritorno, usando le viti di collimazione del primario, in modo da avere una collimazione a prova di star test!

collimazione_primario_3_newton

notate come non è detto che l’ombra sia concentrica al foro, dalle mie esperienze ho potuto notare come è sempre meglio fare riferimento ai cerchietti centrali di diffrazione per ottenere un’ottima collimazione.

collimazione_primario_4_newton

Adesso facciamo la prova del nove, nel nostro caso posizionando il newton sul nostro banco ottico e..vediamo come va!

Come potete vedere dall’immagine, il telescopio è veramente molto ben collimato, semplicemente guardando il laser e le ombre di ritorno, senza andare ad impazzire con altri sistemi più o meno difficili o costosi.

collimazione_newton_star_test

ATTENZIONE: i giochi meccanici nella chiusura dei raccordi e del laser possono determinare un disassamento dello stesso con l’asse ottico del telescopio. Come potete vedere dalle immagini, nel newton di prova c’è un portaoculari classico con 2 viti di blocco. Con alcuni accorgimenti possiamo ottenere buoni risultati, senza dover andare ad adoperare dei sistemi di chiusura autocentranti (che avrebbero anche cattive ripercussioni sul backfocus disponibile).

Il riduttore da 2” a 31,8mm posizionatelo in modo che la vite vada tra le 2 del portaoculari da 2” del focheggiatore
Prima di serrare il riduttore da 31,8mm, con la mano, tenetelo per premuto sul portaoculari da 2” del focheggiatore, in modo da garantire la massima planarità
Quando inserire il laser e la barlow, il discorso è lo stesso: premeteli sempre nel portaoculari

Cosa succede se collimo bene, ma poi vedo che le figure di intra ed extra sono diverse? Avete il focheggiatore che non è montato in modo parallelo all’asse ottico!
Si può rimediare? Certamente, però è una bella rottura…soluzione? Semplice: se fate foto collimate con il focheggiatore in posizione di messa a fuoco, se fate visuale fatelo con il focheggiatore estratto nel punto di fuoco dato dall’oculare più potente che avete. In questo modo andate ad ottimizzare la collimazione nella posizione di fuoco durante l’utilizzo, avendo così la miglior resa possibile.

Se avete qualche domanda, dubbio, non esitate a scrivermi: rc@teleskop-express.it

I Newton odierni sono strumenti ottimi, che costano poco e possono dare tanto, usiamoli nel modo giusto!